BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24194916)

  • 1. The landscape of candidate driver genes differs between male and female breast cancer.
    Johansson I; Ringnér M; Hedenfalk I
    PLoS One; 2013; 8(10):e78299. PubMed ID: 24194916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Entropy-Based Method for Identifying Mutual Exclusive Driver Genes in Cancer.
    Song J; Peng W; Wang F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):758-768. PubMed ID: 30763245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women.
    Colak D; Nofal A; Albakheet A; Nirmal M; Jeprel H; Eldali A; Al-Tweigeri T; Tulbah A; Ajarim D; Malik OA; Inan MS; Kaya N; Park BH; Bin Amer SM
    PLoS One; 2013; 8(5):e63204. PubMed ID: 23704896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring causal genomic alterations in breast cancer using gene expression data.
    Tran LM; Zhang B; Zhang Z; Zhang C; Xie T; Lamb JR; Dai H; Schadt EE; Zhu J
    BMC Syst Biol; 2011 Aug; 5():121. PubMed ID: 21806811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProcessDriver: A computational pipeline to identify copy number drivers and associated disrupted biological processes in cancer.
    Baur B; Bozdag S
    Genomics; 2017 Jul; 109(3-4):233-240. PubMed ID: 28438487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of potential driver mutations involved in human breast cancer by computational approaches.
    Rajendran BK; Deng CX
    Oncotarget; 2017 Jul; 8(30):50252-50272. PubMed ID: 28477017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer.
    Silva GO; He X; Parker JS; Gatza ML; Carey LA; Hou JP; Moulder SL; Marcom PK; Ma J; Rosen JM; Perou CM
    Breast Cancer Res Treat; 2015 Jul; 152(2):347-56. PubMed ID: 26109346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying potential cancer driver genes by genomic data integration.
    Chen Y; Hao J; Jiang W; He T; Zhang X; Jiang T; Jiang R
    Sci Rep; 2013 Dec; 3():3538. PubMed ID: 24346768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncogene amplification in male breast cancer: analysis by multiplex ligation-dependent probe amplification.
    Kornegoor R; Moelans CB; Verschuur-Maes AH; Hogenes MC; de Bruin PC; Oudejans JJ; Marchionni L; van Diest PJ
    Breast Cancer Res Treat; 2012 Aug; 135(1):49-58. PubMed ID: 22527098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetics and cancer: application to the breast].
    Lidereau R; Nogues C
    Arch Anat Cytol Pathol; 1995; 43(1-2):5-11. PubMed ID: 7794027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics analysis for the identification of key genes and long non-coding RNAs related to bone metastasis in breast cancer.
    Teng X; Yang T; Huang W; Li W; Zhou L; Wang Z; Feng Y; Zhang J; Yin X; Wang P; Li G; Yu H; Chen Z; Fan D
    Aging (Albany NY); 2021 Jul; 13(13):17302-17315. PubMed ID: 34226298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Genomic Landscape of Male Breast Cancers.
    Piscuoglio S; Ng CK; Murray MP; Guerini-Rocco E; Martelotto LG; Geyer FC; Bidard FC; Berman S; Fusco N; Sakr RA; Eberle CA; De Mattos-Arruda L; Macedo GS; Akram M; Baslan T; Hicks JB; King TA; Brogi E; Norton L; Weigelt B; Hudis CA; Reis-Filho JS
    Clin Cancer Res; 2016 Aug; 22(16):4045-56. PubMed ID: 26960396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network-based method for identifying cancer driver genes based on node control centrality.
    Li F; Li H; Shang J; Liu JX; Dai L; Liu X; Li Y
    Exp Biol Med (Maywood); 2023 Feb; 248(3):232-241. PubMed ID: 36573462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malignancy of Cancers and Synthetic Lethal Interactions Associated With Mutations of Cancer Driver Genes.
    Wang X; Zhang Y; Han ZG; He KY
    Medicine (Baltimore); 2016 Feb; 95(8):e2697. PubMed ID: 26937901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive genome sequence analysis of a breast cancer amplicon.
    Collins C; Volik S; Kowbel D; Ginzinger D; Ylstra B; Cloutier T; Hawkins T; Predki P; Martin C; Wernick M; Kuo WL; Alberts A; Gray JW
    Genome Res; 2001 Jun; 11(6):1034-42. PubMed ID: 11381030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core module biomarker identification with network exploration for breast cancer metastasis.
    Yang R; Daigle BJ; Petzold LR; Doyle FJ
    BMC Bioinformatics; 2012 Jan; 13():12. PubMed ID: 22257533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival.
    Suo C; Hrydziuszko O; Lee D; Pramana S; Saputra D; Joshi H; Calza S; Pawitan Y
    Bioinformatics; 2015 Aug; 31(16):2607-13. PubMed ID: 25810432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of differently expressed genes with specific SNP Loci for breast cancer by the integration of SNP and gene expression profiling analyses.
    Yuan P; Liu D; Deng M; Liu J; Wang J; Zhang L; Liu Q; Zhang T; Chen Y; Jin G
    Pathol Oncol Res; 2015 Apr; 21(2):469-75. PubMed ID: 25408372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capsule Network Based Modeling of Multi-omics Data for Discovery of Breast Cancer-Related Genes.
    Peng C; Zheng Y; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1605-1612. PubMed ID: 30969931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.