These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2419519)

  • 1. Plasma membrane structure at the axon hillock, initial segment and cell body of frog dorsal root ganglion cells.
    Matsumoto E; Rosenbluth J
    J Neurocytol; 1985 Oct; 14(5):731-47. PubMed ID: 2419519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the satellite cell sheath around the cell body, axon hillock, and initial segment of frog dorsal root ganglion cells.
    Matsumoto E; Rosenbluth J
    Anat Rec; 1986 Jun; 215(2):182-91. PubMed ID: 3729013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves.
    Tao-Cheng JH; Rosenbluth J
    Brain Res; 1980 Oct; 199(2):249-65. PubMed ID: 6251942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in intramembranous particle distribution in the paranodal axolemma are not associated with functional differences of dorsal and ventral roots.
    Fields RD; Black JA; Bowe CM; Kocsis JD; Waxman SG
    Neurosci Lett; 1986 Jun; 67(1):13-8. PubMed ID: 2425295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramembranous particle distribution at the node of Ranvier and adjacent axolemma in myelinated axons of the frog brain.
    Rosenbluth J
    J Neurocytol; 1976 Dec; 5(6):731-45. PubMed ID: 1087339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular specializations of the axon membrane at nodes of Ranvier are not dependent upon myelination.
    Ellisman MH
    J Neurocytol; 1979 Dec; 8(6):719-35. PubMed ID: 541690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze fracture analysis of the axolemma of cultured dorsal root ganglion neurons in the absence of Schwann cells.
    Bigbee JW; Foster RE
    Brain Res; 1989 Aug; 494(1):182-6. PubMed ID: 2765918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord.
    Black JA; Waxman SG; Sims TJ; Gilmore SA
    J Neurocytol; 1986 Dec; 15(6):745-61. PubMed ID: 3819778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuronal endomembrane system. III. The origins of the axoplasmic reticulum and discrete axonal cisternae at the axon hillock.
    Lindsey JD; Ellisman MH
    J Neurosci; 1985 Dec; 5(12):3135-44. PubMed ID: 3878394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane specialization and axo-glial association in the rat retinal nerve fibre layer: freeze-fracture observations.
    Black JA; Waxman SG; Hildebrand C
    J Neurocytol; 1984 Jun; 13(3):417-30. PubMed ID: 6481406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axo-glial relations in the retina-optic nerve junction of the adult rat: freeze-fracture observations on axon membrane structure.
    Black JA; Waxman SG; Hildebrand C
    J Neurocytol; 1985 Dec; 14(6):887-907. PubMed ID: 3831245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extranodal particle accumulations in the axolemma of myelinated frog optic axons.
    Tao-Cheng JH; Rosenbluth J
    Brain Res; 1984 Aug; 308(2):289-300. PubMed ID: 6332658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-fracture studies on unmyelinated axolemma of rat cervical sympathetic trunk: correlation with saxitoxin binding.
    Black JA; Waxman SG
    Proc R Soc Lond B Biol Sci; 1988 Feb; 233(1270):45-54. PubMed ID: 2451831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The axon hillock and the initial segment.
    Palay SL; Sotelo C; Peters A; Orkand PM
    J Cell Biol; 1968 Jul; 38(1):193-201. PubMed ID: 5691973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-fracture study of the mechanoreceptive digital corpuscles of mice.
    Ide C; Kumagai K; Hayashi S
    J Neurocytol; 1985 Dec; 14(6):1037-52. PubMed ID: 3831243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nodal and paranodal structural changes in frog optic nerve during early Wallerian degeneration.
    Ishise J; Rosenbluth J
    J Neurocytol; 1986 Oct; 15(5):657-70. PubMed ID: 3490546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axolemmal differentiation in myelinated fibers of rat peripheral nerves.
    Tao-Cheng JH; Rosenbluth J
    Brain Res; 1983 Sep; 285(3):251-63. PubMed ID: 6627022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-binding sites in trigeminal ganglia and maxillary nerve: unusual reactivity of perikarya, stem axons and satellite cells.
    Byers MR; Costello RJ
    Brain Res; 1988 Mar; 443(1-2):125-36. PubMed ID: 2451989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecular structure of axon membrane and action potential conduction in myelin deficient and myelin deficient heterozygote rat optic nerves.
    Waxman SG; Black JA; Duncan ID; Ransom BR
    J Neurocytol; 1990 Feb; 19(1):11-28. PubMed ID: 2351992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane structure of vesiculotubular complexes in developing axons in rat optic nerve: freeze-fracture evidence for sequential membrane assembly.
    Waxman SG; Black JA
    Proc R Soc Lond B Biol Sci; 1985 Sep; 225(1240):357-63. PubMed ID: 2865731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.