BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24195383)

  • 1. [Rational screen of high kelimycin-producing strain by combined conventional mutagenesis and high-throughput screen method].
    Liu X; Li P; Zhao X; Wang Y; Zhang S
    Wei Sheng Wu Xue Bao; 2013 Jul; 53(7):758-65. PubMed ID: 24195383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization.
    Zhu X; Zhang W; Chen X; Wu H; Duan Y; Xu Z
    Biotechnol Bioeng; 2010 Oct; 107(3):506-15. PubMed ID: 20517869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine improves the component of isovalerylspiramycins for the production of bitespiramycin.
    Li ZL; Wang YH; Chu J; Zhuang YP; Zhang SL
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):641-7. PubMed ID: 19115067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of 4"-isovalerylspiramycin-I-producing strain by in-frame partial deletion of 3-O-acyltransferase gene in Streptomyces spiramyceticus WSJ-1, the bitespiramycin producer.
    Ma C; Zhou H; Li J; Dai J; He W; Wang H; Wu L; Wang Y
    Curr Microbiol; 2011 Jan; 62(1):16-20. PubMed ID: 20490499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a stable bioengineered strain of biotechmycin.
    Shang G; Dai J; Wang Y
    Chin J Biotechnol; 1999; 15(2):105-11. PubMed ID: 10719630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a genetically engineered strain producing propionylspiramycin.
    Li Y; Liu B; Li X; Yang Y; Wang S
    Chin J Biotechnol; 1992; 8(2):99-106. PubMed ID: 1297445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Acylation specificity of midecamycin 3-O-acyltransferase within Streptomyces spiramyceticus F21].
    Ma C; Wu L; Dai J; Zhou H; Li J; Sun X; Zhang K; Xia H; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2086-92. PubMed ID: 19306580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in colony morphology and kinetics of tylosin production after UV and gamma irradiation mutagenesis of Streptomyces fradiae NRRL-2702.
    Khaliq S; Akhtar K; Afzal Ghauri M; Iqbal R; Mukhtar Khalid A; Muddassar M
    Microbiol Res; 2009; 164(4):469-77. PubMed ID: 17475458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and physiological studies on a stable bioengineered strain of shengjimycin.
    Guangdong S; Jianlu D; Yiguang W
    J Antibiot (Tokyo); 2001 Jan; 54(1):66-73. PubMed ID: 11269716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Deletion of spiramycin 3-O-acyltransferase gene from Streptomyces spiramyceticus F21 resulting in the production of spiramycin I as major component].
    Wu LZ; Ma CY; Wang YG; Dai JL; Li JY; Xia HZ
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):612-7. PubMed ID: 17849607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling.
    Xu B; Jin Z; Wang H; Jin Q; Jin X; Cen P
    Appl Microbiol Biotechnol; 2008 Aug; 80(2):261-7. PubMed ID: 18542945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulatory genes involved in spiramycin and bitespiramycin biosynthesis.
    Dai J; Wang Y; Liu J; He W
    Microbiol Res; 2020 Nov; 240():126532. PubMed ID: 32622100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coloning and expression of spiramycin polyketide synthase genes and resistance genes from S. spiramyceticus U-1941.
    Tang L; Wang YG; Zhu XW
    Chin J Biotechnol; 1991; 7(1):33-42. PubMed ID: 1773014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of angucycline production by combined UV mutagenesis and ribosome engineering and fermentation optimization in
    Li Y; Li J; Ye Z; Lu L
    Prep Biochem Biotechnol; 2021; 51(2):173-182. PubMed ID: 32815762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced doxorubicin production by Streptomyces peucetius using a combination of classical strain mutation and medium optimization.
    Wang X; Tian X; Wu Y; Shen X; Yang S; Chen S
    Prep Biochem Biotechnol; 2018; 48(6):514-521. PubMed ID: 29939834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome shuffling and ribosome engineering of Streptomyces actuosus for high-yield nosiheptide production.
    Wang Q; Zhang D; Li Y; Zhang F; Wang C; Liang X
    Appl Biochem Biotechnol; 2014 Jul; 173(6):1553-63. PubMed ID: 24828581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain improvement by combined UV mutagenesis and ribosome engineering and subsequent fermentation optimization for enhanced 6'-deoxy-bleomycin Z production.
    Zhu X; Kong J; Yang H; Huang R; Huang Y; Yang D; Shen B; Duan Y
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1651-1661. PubMed ID: 29279956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved production of spiramycin by mutant Streptomyces ambofaciens.
    Jin ZH; Cen PL
    J Zhejiang Univ Sci; 2004 Jun; 5(6):689-95. PubMed ID: 15101103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Studies of increasing the forward-mutation rate of UV irradiated Streptomyces sp. AP 19-1, an antibiotics producing strain].
    Wu XC; Wang ZY; Zhou J; Zhu XF; Qian KX
    Yi Chuan; 2004 Jul; 26(4):499-504. PubMed ID: 15640049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of microbial strain and fermentation process of rapamycin biosynthesis.
    Baby Rani P; Battula SK; Rao AK; Gunja M; Narasu ML
    Prep Biochem Biotechnol; 2013; 43(6):539-50. PubMed ID: 23742086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.