These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 24195487)

  • 1. Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control.
    Schiffres SN; Harish S; Maruyama S; Shiomi J; Malen JA
    ACS Nano; 2013 Dec; 7(12):11183-9. PubMed ID: 24195487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.
    Liu M; Ma Y; Wu H; Wang RY
    ACS Nano; 2015 Feb; 9(2):1341-51. PubMed ID: 25610944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials.
    Warzoha RJ; Fleischer AS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12868-76. PubMed ID: 24983698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grafting macromolecular chains on the surface of graphene oxide through crosslinker for antistatic and thermally stable polyethylene terephthalate nanocomposites.
    Meng Z; Lu S; Zhang D; Liu Q; Chen X; Liu W; Guo C; Liu Z; Zhong W; Ke Y
    RSC Adv; 2022 Nov; 12(51):33329-33339. PubMed ID: 36425195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly conductive multifunctional graphene polycarbonate nanocomposites.
    Yoonessi M; Gaier JR
    ACS Nano; 2010 Dec; 4(12):7211-20. PubMed ID: 21082818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Graphene-Polyimide Nanocomposites with Superior Electrical Conductivity.
    Yoonessi M; Gaier JR; Sahimi M; Daulton TL; Kaner RB; Meador MA
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43230-43238. PubMed ID: 29168637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Percolation in Well-Defined Nanocomposite Thin Films.
    Chang BS; Li C; Dai J; Evans K; Huang J; He M; Hu W; Tian Z; Xu T
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14579-14587. PubMed ID: 35311286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties.
    Gao C; Zhang S; Wang F; Wen B; Han C; Ding Y; Yang M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12252-60. PubMed ID: 24969179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric-Field-Tunable Conductivity in Graphene/Water and Graphene/Ice Systems.
    Zhai P; Wang Y; Liu C; Wang X; Feng SP
    Small; 2017 Oct; 13(39):. PubMed ID: 28834336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible graphene-graphene composites of superior thermal and electrical transport properties.
    Hou ZL; Song WL; Wang P; Meziani MJ; Kong CY; Anderson A; Maimaiti H; LeCroy GE; Qian H; Sun YP
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15026-32. PubMed ID: 25118974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Graphene Nanocomposites with Simultaneous Highly Anisotropic Thermal and Electrical Conductivities Prepared by Engineered Graphene with Flat Morphology.
    Zhuang Y; Zheng K; Cao X; Fan Q; Ye G; Lu J; Zhang J; Ma Y
    ACS Nano; 2020 Sep; 14(9):11733-11742. PubMed ID: 32865991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible temperature regulation of electrical and thermal conductivity using liquid-solid phase transitions.
    Zheng R; Gao J; Wang J; Chen G
    Nat Commun; 2011; 2():289. PubMed ID: 21505445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-linked g-C3 N4 /rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity.
    Li Y; Zhang H; Liu P; Wang D; Li Y; Zhao H
    Small; 2013 Oct; 9(19):3336-44. PubMed ID: 23630157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.
    Wang Y; Mi H; Zheng Q; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2641-7. PubMed ID: 25588062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling diffusion in foamed polymer nanocomposites.
    Ippalapalli S; Ranaprathapan AD; Singh SN; Harikrishnan G
    Chemphyschem; 2013 Apr; 14(6):1190-6. PubMed ID: 23463718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.
    Zaman I; Kuan HC; Dai J; Kawashima N; Michelmore A; Sovi A; Dong S; Luong L; Ma J
    Nanoscale; 2012 Aug; 4(15):4578-86. PubMed ID: 22706725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted "Z" Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane).
    Guo Y; Chen Y; Wang E; Cakmak M
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):919-929. PubMed ID: 27982568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites.
    Yang L; Kong J; Yee WA; Liu W; Phua SL; Toh CL; Huang S; Lu X
    Nanoscale; 2012 Aug; 4(16):4968-71. PubMed ID: 22797422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-based conductive composites with tailored thermal expansion.
    Della Gaspera E; Tucker R; Star K; Lan EH; Ju YS; Dunn B
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10966-74. PubMed ID: 24175870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.