These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24195747)

  • 1. Microscopically based calculations of the free energy barrier and dynamic length scale in supercooled liquids: the comparative role of configurational entropy and elasticity.
    Rabochiy P; Wolynes PG; Lubchenko V
    J Phys Chem B; 2013 Dec; 117(48):15204-19. PubMed ID: 24195747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic calculation of the free energy cost for activated transport in glass-forming liquids.
    Rabochiy P; Lubchenko V
    J Chem Phys; 2013 Mar; 138(12):12A534. PubMed ID: 23556785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism of activated transport in glassy liquids.
    Lubchenko V; Rabochiy P
    J Phys Chem B; 2014 Nov; 118(47):13744-59. PubMed ID: 25347199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid state elasticity and the onset of activated transport in glass formers.
    Rabochiy P; Lubchenko V
    J Phys Chem B; 2012 May; 116(19):5729-37. PubMed ID: 22533839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic vs. elastic models of fragility of glass-forming liquids: two sides of the same coin?
    Sen S
    J Chem Phys; 2012 Oct; 137(16):164505. PubMed ID: 23126728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic-kinetic correlations in supercooled liquids: a critical survey of experimental data and predictions of the random first-order transition theory of glasses.
    Stevenson JD; Wolynes PG
    J Phys Chem B; 2005 Aug; 109(31):15093-7. PubMed ID: 16852910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamically correlated regions and configurational entropy in supercooled liquids.
    Capaccioli S; Ruocco G; Zamponi F
    J Phys Chem B; 2008 Aug; 112(34):10652-8. PubMed ID: 18671368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and relaxation in germanium selenide glasses and supercooled liquids: a Raman spectroscopic study.
    Edwards TG; Sen S
    J Phys Chem B; 2011 Apr; 115(15):4307-14. PubMed ID: 21446741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetic fragility of liquids as manifestation of the elastic softening.
    Puosi F; Leporini D
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):87. PubMed ID: 26261070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastically cooperative activated barrier hopping theory of relaxation in viscous fluids. II. Thermal liquids.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 May; 140(19):194507. PubMed ID: 24852550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive elastic networks as models of supercooled liquids.
    Yan L; Wyart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022310. PubMed ID: 26382409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach to numerical measurements of the configurational entropy in supercooled liquids.
    Berthier L; Coslovich D
    Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11668-72. PubMed ID: 25071188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.
    Freed KF
    J Chem Phys; 2014 Oct; 141(14):141102. PubMed ID: 25318708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16077-82. PubMed ID: 18927234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of viscous flow and elasticity of glass forming liquids in the glass transition range.
    Rouxel T
    J Chem Phys; 2011 Nov; 135(18):184501. PubMed ID: 22088069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses.
    Bouchaud JP; Biroli G
    J Chem Phys; 2004 Oct; 121(15):7347-54. PubMed ID: 15473805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.