These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 24195866)
1. Prediction of energy expenditure and physical activity in preschoolers. Butte NF; Wong WW; Lee JS; Adolph AL; Puyau MR; Zakeri IF Med Sci Sports Exerc; 2014 Jun; 46(6):1216-26. PubMed ID: 24195866 [TBL] [Abstract][Full Text] [Related]
2. Cross-sectional time series and multivariate adaptive regression splines models using accelerometry and heart rate predict energy expenditure of preschoolers. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Nutr; 2013 Jan; 143(1):114-22. PubMed ID: 23190760 [TBL] [Abstract][Full Text] [Related]
3. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. Butte NF; Wong WW; Adolph AL; Puyau MR; Vohra FA; Zakeri IF J Nutr; 2010 Aug; 140(8):1516-23. PubMed ID: 20573939 [TBL] [Abstract][Full Text] [Related]
4. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930 [TBL] [Abstract][Full Text] [Related]
5. Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings. Schneller MB; Pedersen MT; Gupta N; Aadahl M; Holtermann A Sensors (Basel); 2015 Mar; 15(3):6133-51. PubMed ID: 25781506 [TBL] [Abstract][Full Text] [Related]
6. Application of cross-sectional time series modeling for the prediction of energy expenditure from heart rate and accelerometry. Zakeri I; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2008 Jun; 104(6):1665-73. PubMed ID: 18403453 [TBL] [Abstract][Full Text] [Related]
7. Validation of the ActiGraph two-regression model for predicting energy expenditure. Rothney MP; Brychta RJ; Meade NN; Chen KY; Buchowski MS Med Sci Sports Exerc; 2010 Sep; 42(9):1785-92. PubMed ID: 20142778 [TBL] [Abstract][Full Text] [Related]
8. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study. Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP; J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396 [TBL] [Abstract][Full Text] [Related]
9. Validation of uniaxial and triaxial accelerometers for the assessment of physical activity in preschool children. Adolph AL; Puyau MR; Vohra FA; Nicklas TA; Zakeri IF; Butte NF J Phys Act Health; 2012 Sep; 9(7):944-53. PubMed ID: 22207582 [TBL] [Abstract][Full Text] [Related]
10. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers. Van Cauwenberghe E; Gubbels J; De Bourdeaudhuij I; Cardon G Int J Behav Nutr Phys Act; 2011 Jun; 8():67. PubMed ID: 21703004 [TBL] [Abstract][Full Text] [Related]
11. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth. Choi L; Chen KY; Acra SA; Buchowski MS J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770 [TBL] [Abstract][Full Text] [Related]
12. Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity. Crouter SE; DellaValle DM; Haas JD; Frongillo EA; Bassett DR J Phys Act Health; 2013 May; 10(4):504-14. PubMed ID: 22975460 [TBL] [Abstract][Full Text] [Related]
13. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children. Pulsford RM; Cortina-Borja M; Rich C; Kinnafick FE; Dezateux C; Griffiths LJ PLoS One; 2011; 6(8):e21822. PubMed ID: 21853021 [TBL] [Abstract][Full Text] [Related]
14. The Actiheart in adolescents: a doubly labelled water validation. Campbell N; Prapavessis H; Gray C; McGowan E; Rush E; Maddison R Pediatr Exerc Sci; 2012 Nov; 24(4):589-602. PubMed ID: 23196766 [TBL] [Abstract][Full Text] [Related]
15. Comparison of accelerometer cut points for predicting activity intensity in youth. Trost SG; Loprinzi PD; Moore R; Pfeiffer KA Med Sci Sports Exerc; 2011 Jul; 43(7):1360-8. PubMed ID: 21131873 [TBL] [Abstract][Full Text] [Related]
16. Validity of combining heart rate and uniaxial acceleration to measure free-living physical activity energy expenditure in young men. Villars C; Bergouignan A; Dugas J; Antoun E; Schoeller DA; Roth H; Maingon AC; Lefai E; Blanc S; Simon C J Appl Physiol (1985); 2012 Dec; 113(11):1763-71. PubMed ID: 23019315 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the TriTrac-R3D accelerometer and a self-report activity diary with heart-rate monitoring for the assessment of energy expenditure in children. Rodriguez G; Béghin L; Michaud L; Moreno LA; Turck D; Gottrand F Br J Nutr; 2002 Jun; 87(6):623-31. PubMed ID: 12067433 [TBL] [Abstract][Full Text] [Related]
18. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]