These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 24195996)

  • 1. Taylor dispersion and the position-to-time conversion in microfluidic mixing devices.
    Wunderlich B; Nettels D; Schuler B
    Lab Chip; 2014 Jan; 14(1):219-28. PubMed ID: 24195996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation: modelling and experiment.
    Nguyen NT; Huang X
    Lab Chip; 2005 Nov; 5(11):1320-6. PubMed ID: 16234959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling, fabrication and characterization of a polymeric micromixer based on sequential segmentation.
    Nguyen NT; Huang X
    Biomed Microdevices; 2006 Jun; 8(2):133-9. PubMed ID: 16688572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-of-flight thermal flowrate sensor for lab-on-chip applications.
    Berthet H; Jundt J; Durivault J; Mercier B; Angelescu D
    Lab Chip; 2011 Jan; 11(2):215-23. PubMed ID: 21072440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes.
    Wunderlich B; Nettels D; Benke S; Clark J; Weidner S; Hofmann H; Pfeil SH; Schuler B
    Nat Protoc; 2013 Aug; 8(8):1459-74. PubMed ID: 23845960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous mixing behaviour in rotationally actuated microfluidic devices.
    Chakraborty D; Madou M; Chakraborty S
    Lab Chip; 2011 Sep; 11(17):2823-6. PubMed ID: 21776486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics.
    Gambin Y; Simonnet C; VanDelinder V; Deniz A; Groisman A
    Lab Chip; 2010 Mar; 10(5):598-609. PubMed ID: 20162235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid mixing in planar spiral microchannels.
    Sudarsan AP; Ugaz VM
    Lab Chip; 2006 Jan; 6(1):74-82. PubMed ID: 16372072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers.
    Wagner C; Buchegger W; Vellekoop M; Kraft M; Lendl B
    Anal Bioanal Chem; 2011 Jun; 400(8):2487-97. PubMed ID: 21369756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device.
    Lee MG; Choi S; Park JK
    Lab Chip; 2009 Nov; 9(21):3155-60. PubMed ID: 19823733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusive spreading of time-dependent pressures in elastic microfluidic devices.
    Wunderlich BK; Klessinger UA; Bausch AR
    Lab Chip; 2010 Apr; 10(8):1025-9. PubMed ID: 20358110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems.
    Curtis MD; Sheard GJ; Fouras A
    Lab Chip; 2011 Jul; 11(14):2343-51. PubMed ID: 21611664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phaseguided passive batch microfluidic mixing chamber for isothermal amplification.
    Hakenberg S; Hügle M; Weidmann M; Hufert F; Dame G; Urban GA
    Lab Chip; 2012 Nov; 12(21):4576-80. PubMed ID: 22952055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inertia enhanced passive pumping mechanism for fluid flow in microfluidic devices.
    Resto PJ; Berthier E; Beebe DJ; Williams JC
    Lab Chip; 2012 Jun; 12(12):2221-8. PubMed ID: 22441561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic baker's transformation device for three-dimensional rapid mixing.
    Yasui T; Omoto Y; Osato K; Kaji N; Suzuki N; Naito T; Watanabe M; Okamoto Y; Tokeshi M; Shamoto E; Baba Y
    Lab Chip; 2011 Oct; 11(19):3356-60. PubMed ID: 21845274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.