BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24196064)

  • 1. Genetic variation in agronomically important species of Stylosanthes determined using random amplified polymorphic DNA markers.
    Kazan K; Manners JM; Cameron DF
    Theor Appl Genet; 1993 Feb; 85(6-7):882-8. PubMed ID: 24196064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic relationships and variation in the Stylosanthes guianensis species complex assessed by random amplified polymorphic DNA.
    Kazan K; Manners JM; Cameron DF
    Genome; 1993 Feb; 36(1):43-9. PubMed ID: 8458571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inheritance of random amplified polymorphic DNA markers in an interspecific cross in the genus Stylosanthes.
    Kazan K; Manners JM; Cameron DF
    Genome; 1993 Feb; 36(1):50-6. PubMed ID: 8458572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymorphism analysis in identification of genetic variation and relationships among Stylosanthes species.
    Huang C; Liu G; Bai C
    3 Biotech; 2017 May; 7(1):39. PubMed ID: 28439811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evidence that diploid Stylosanthes humilis and diploid Stylosanthes hamata are progenitors of allotetraploid Stylosanthes hamata cv. Verano.
    Curtis MD; Manners JM; Cameron DF
    Genome; 1995 Apr; 38(2):344-8. PubMed ID: 18470174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Diploid Stylosanthes seabrana accessions from existing germplasm of S. scabra utilizing genome-specific STS markers and flow cytometry, and their molecular characterization.
    Chandra A; Kaushal P
    Mol Biotechnol; 2009 Jul; 42(3):282-91. PubMed ID: 19214807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a low level of genomic specificity of sequence-tagged-sites in Stylosanthes.
    Liu CJ; Musial JM; Smith FW
    Theor Appl Genet; 1996 Oct; 93(5-6):864-8. PubMed ID: 24162419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific and progeny relationships in the genus Stylosanthes inferred from chloroplast DNA sequence variation.
    Stappen JV; Weltjens I; Munaut F; Volckaert G
    C R Acad Sci III; 1999 Jun; 322(6):481-90. PubMed ID: 10457600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of genetic variation within Indian mustard (Brassica juncea) germplasm using random amplified polymorphic DNA markers.
    Khan MA; Rabbani MA; Munir M; Ajmal SK; Malik MA
    J Integr Plant Biol; 2008 Apr; 50(4):385-92. PubMed ID: 18713372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and parental genome characterization of the allotetraploid Stylosanthes scabra Vogel (Papilionoideae, Leguminosae), an important legume pasture crop.
    Marques A; Moraes L; Aparecida Dos Santos M; Costa I; Costa L; Nunes T; Melo N; Simon MF; Leitch AR; Almeida C; Souza G
    Ann Bot; 2018 Dec; 122(7):1143-1159. PubMed ID: 29982475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes.
    Skroch PW; Nienhuis J
    Theor Appl Genet; 1995 Nov; 91(6-7):1078-85. PubMed ID: 24169999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species.
    Raina SN; Rani V; Kojima T; Ogihara Y; Singh KP; Devarumath RM
    Genome; 2001 Oct; 44(5):763-72. PubMed ID: 11681599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA profiling of banana and plantain cultivars using random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers.
    Bhat KV; Jarret RL; Rana RS
    Electrophoresis; 1995 Sep; 16(9):1736-45. PubMed ID: 8582364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA.
    Rus-Kortekaas W; Smulders MJ; Arens P; Vosman B
    Genome; 1994 Jun; 37(3):375-81. PubMed ID: 18470082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic fingerprinting of Australian cotton cultivars with RAPD markers.
    Multani DS; Lyon BR
    Genome; 1995 Oct; 38(5):1005-8. PubMed ID: 18470223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance.
    Sun G; Bond M; Nass H; Martin R; Dong Z
    Theor Appl Genet; 2003 Apr; 106(6):1059-67. PubMed ID: 12671754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of genetic diversity and relationships among Egyptian mango (Mangifera indica L.) cultivers grown in Suez Canal and Sinai region using RAPD markers.
    Mansour H; Mekki LE; Hussein MA
    Pak J Biol Sci; 2014 Jan; 17(1):56-61. PubMed ID: 24783778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic relationships in Lens species and parentage determination of their interspecific hybrids using RAPD markers.
    Ahmad M; McNeil DL; Fautrier AG; Armstrong KF; Paterson AM
    Theor Appl Genet; 1996 Jun; 92(8):1091-8. PubMed ID: 24166641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and analysis of genetic variation among rose cultivars using random amplified polymorphic DNA.
    Mohapatra A; Rout GR
    Z Naturforsch C J Biosci; 2005; 60(7-8):611-7. PubMed ID: 16163838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAPD analysis of genetic variation in the Australian fan flower, Scaevola.
    Swoboda I; Bhalla PL
    Genome; 1997 Oct; 40(5):600-6. PubMed ID: 9352642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.