These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24196064)

  • 41. Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling.
    Sheet S; Ghosh K; Acharya S; Kim KP; Lee YS
    Plants (Basel); 2018 Mar; 7(1):. PubMed ID: 29543756
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationships among cultivated and wild lentils revealed by RAPD analysis.
    Sharma SK; Dawson IK; Waugh R
    Theor Appl Genet; 1995 Sep; 91(4):647-54. PubMed ID: 24169893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic variation in monoploids of diploid potatoes and detection of clone-specific random amplified polymorphic DNA markers.
    Singsit C; Ozias-Akins P
    Plant Cell Rep; 1993 Jan; 12(3):144-8. PubMed ID: 24196851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a second generation linkage map for almond using RAPD and SSR markers.
    Joobeur T; Periam N; de Vicente MC; King GJ; Arús P
    Genome; 2000 Aug; 43(4):649-55. PubMed ID: 10984177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic relationships and variation among ecotypes of seashore paspalum (Paspalum vaginatum) determined by random amplified polymorphic DNA markers.
    Liu ZW; Jarret RL; Duncan RR; Kresovich S
    Genome; 1994 Dec; 37(6):1011-7. PubMed ID: 18470139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic diversity among cultivars of spring barley revealed by random amplified polymorphic DNA (RAPD).
    Kuczyńska A; Milczarski P; Surma M; Masojć P; Adamski T
    J Appl Genet; 2001; 42(1):43-8. PubMed ID: 14564062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis.
    Vicario F; Vendramin GG; Rossi P; Liò P; Giannini R
    Theor Appl Genet; 1995 Jun; 90(7-8):1012-8. PubMed ID: 24173056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Detection of interspecific and intraspecific variation in Panicum millets through random amplified polymorphic DNA.
    M'ribu HK; Hilu KW
    Theor Appl Genet; 1994 Jun; 88(3-4):412-6. PubMed ID: 24186027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determining Phylogenetic Relationships Among Date Palm Cultivars Using Random Amplified Polymorphic DNA (RAPD) and Inter-Simple Sequence Repeat (ISSR) Markers.
    Haider N
    Methods Mol Biol; 2017; 1638():153-172. PubMed ID: 28755222
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers.
    Mujaju C; Sehic J; Werlemark G; Garkava-Gustavsson L; Fatih M; Nybom H
    Hereditas; 2010 Aug; 147(4):142-53. PubMed ID: 20887600
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Genetic polymorphism of bluegrass cultivars detected by RAPDs].
    Ning TT; Zhang ZJ; Jin CZ; Zhu YG
    Yi Chuan; 2005 Jul; 27(4):605-10. PubMed ID: 16120587
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen.
    Liu Z; Furnier GR
    Theor Appl Genet; 1993 Oct; 87(1-2):97-105. PubMed ID: 24190200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Random Amplified Polymorphic DNA (RAPD) and Derived Techniques.
    Babu KN; Sheeja TE; Minoo D; Rajesh MK; Samsudeen K; Suraby EJ; Kumar IPV
    Methods Mol Biol; 2021; 2222():219-247. PubMed ID: 33301097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic diversity in Elymus caninus as revealed by isozyme, RAPD, and microsatellite markers.
    Sun GL; Díaz O; Salomon B; von Bothmer R
    Genome; 1999 Jun; 42(3):420-31. PubMed ID: 10382290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum.
    Williams CE; Clair DA
    Genome; 1993 Jun; 36(3):619-30. PubMed ID: 18470012
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discrimination among three species of medicinal Scutellaria plants using RAPD markers.
    Hosokawa K; Minami M; Kawahara K; Nakamura I; Shibata T
    Planta Med; 2000 Apr; 66(3):270-2. PubMed ID: 10821055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RFLP- and RAPD-based genetic relationships of seven diploid species of Avena with the A genome.
    Nocelli E; Giovannini T; Bioni M; Alicchio R
    Genome; 1999 Oct; 42(5):950-9. PubMed ID: 10584313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diversity among Stylosanthes species: habitat, edaphic and agro-climatic affinities leading to cultivar development.
    Chandra A
    J Environ Biol; 2009 Jul; 30(4):471-8. PubMed ID: 20120482
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Segregating random amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis.
    Roy A; Frascaria N; Mackay J; Bousquet J
    Theor Appl Genet; 1992 Nov; 85(2-3):173-80. PubMed ID: 24197301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of genetic diversity in Chinese kale (Brassica oleracea L. var. alboglabra Bailey) by using rapid amplified polymorphic DNA and sequence-related amplified polymorphism markers.
    Zhang J; Zhang LG
    Genet Mol Res; 2014 Feb; 13(2):3567-76. PubMed ID: 24615113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.