BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24196201)

  • 1. Detachment ofPseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress.
    Delaquis PJ; Caldwell DE; Lawrence JR; McCurdy AR
    Microb Ecol; 1989 Nov; 18(3):199-210. PubMed ID: 24196201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the ability to form biofilms by plant-associated Pseudomonas species.
    Ueda A; Saneoka H
    Curr Microbiol; 2015 Apr; 70(4):506-13. PubMed ID: 25487118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments.
    Lawrence JR; Delaquis PJ; Korber DR; Caldwell DE
    Microb Ecol; 1987 Jul; 14(1):1-14. PubMed ID: 24202602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces.
    Ngwai YB; Adachi Y; Ogawa Y; Hara H
    J Microbiol Immunol Infect; 2006 Aug; 39(4):278-91. PubMed ID: 16926973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bulk water phase and biofilm growth in drinking water at low nutrient conditions.
    Boe-Hansen R; Albrechtsen HJ; Arvin E; Jørgensen C
    Water Res; 2002 Nov; 36(18):4477-86. PubMed ID: 12418650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces.
    Simões M; Simões LC; Cleto S; Pereira MO; Vieira MJ
    Int J Food Microbiol; 2008 Feb; 121(3):335-41. PubMed ID: 18155793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces.
    Barahona E; Navazo A; Yousef-Coronado F; Aguirre de Cárcer D; Martínez-Granero F; Espinosa-Urgel M; Martín M; Rivilla R
    Environ Microbiol; 2010 Dec; 12(12):3185-95. PubMed ID: 20626456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms.
    Allison DG; Ruiz B; SanJose C; Jaspe A; Gilbert P
    FEMS Microbiol Lett; 1998 Oct; 167(2):179-84. PubMed ID: 9867469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589.
    Dusane DH; Nancharaiah YV; Venugopalan VP; Kumar AR; Zinjarde SS
    Water Sci Technol; 2008; 58(12):2467-75. PubMed ID: 19092226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion of Pseudomonas fluorescens biofilms to glass, stainless steel and cellulose.
    Wan Dagang WR; Bowen J; O'Keeffe J; Robbins PT; Zhang Z
    Biotechnol Lett; 2016 May; 38(5):787-92. PubMed ID: 26892223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation.
    Schleheck D; Barraud N; Klebensberger J; Webb JS; McDougald D; Rice SA; Kjelleberg S
    PLoS One; 2009; 4(5):e5513. PubMed ID: 19436737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Motility on Surface Colonization and Reproductive Success of Pseudomonas fluorescens in Dual-Dilution Continuous Culture and Batch Culture Systems.
    Korber DR; Lawrence JR; Caldwell DE
    Appl Environ Microbiol; 1994 May; 60(5):1421-9. PubMed ID: 16349247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon.
    Pang X; Yuk HG
    Food Microbiol; 2019 Sep; 82():142-150. PubMed ID: 31027768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of biofilm composition on the resistance to detachment.
    Simões M; Cleto S; Pereira MO; Vieira MJ
    Water Sci Technol; 2007; 55(8-9):473-80. PubMed ID: 17547019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Biofilms by Foodborne Pathogens and Development of Laboratory In Vitro Model for the Study of Campylobacter Genus Bacteria Based on These Biofilms.
    Efimochkina NR; Bykova IB; Markova YM; Korotkevich YV; Stetsenko VV; Minaeva LP; Sheveleva SA
    Bull Exp Biol Med; 2017 Feb; 162(4):474-478. PubMed ID: 28243912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes.
    Chen MJ; Zhang Z; Bott TR
    Colloids Surf B Biointerfaces; 2005 Jun; 43(2):61-71. PubMed ID: 15913966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of three-dimensional biofilms on different material surfaces.
    Schiebel J; Noack J; Rödiger S; Kammel A; Menzel F; Schwibbert K; Weise M; Weiss R; Böhm A; Nitschke J; Elimport A; Roggenbuck D; Schierack P
    Biomater Sci; 2020 Jun; 8(12):3500-3510. PubMed ID: 32432585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducible biofilm cultivation of chemostat-grown Escherichia coli and investigation of bacterial adhesion on biomaterials using a non-constant-depth film fermenter.
    Lüdecke C; Jandt KD; Siegismund D; Kujau MJ; Zang E; Rettenmayr M; Bossert J; Roth M
    PLoS One; 2014; 9(1):e84837. PubMed ID: 24404192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm formation of Bdellovibrio bacteriovorus host-independent derivatives.
    Medina AA; Kadouri DE
    Res Microbiol; 2009 Apr; 160(3):224-31. PubMed ID: 19223013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.