These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24196408)

  • 1. Programmable hydrogenation of graphene for novel nanocages.
    Zhang L; Zeng X; Wang X
    Sci Rep; 2013 Nov; 3():3162. PubMed ID: 24196408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release.
    Zhu S; Li T
    ACS Nano; 2014 Mar; 8(3):2864-72. PubMed ID: 24564284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic insights into the nanohelix of hydrogenated graphene: formation, characterization and application.
    Zhang L; Wang X
    Phys Chem Chem Phys; 2014 Feb; 16(7):2981-8. PubMed ID: 24390310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics of the scrolling and folding of graphene.
    Li H; Li M; Kang Z
    Nanotechnology; 2018 Jun; 29(24):245604. PubMed ID: 29558361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage.
    Wu Q; Yang L; Wang X; Hu Z
    Acc Chem Res; 2017 Feb; 50(2):435-444. PubMed ID: 28145692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and MM simulation insights.
    Liu Z; Xue Q; Tao Y; Li X; Wu T; Jin Y; Zhang Z
    Phys Chem Chem Phys; 2015 Feb; 17(5):3441-50. PubMed ID: 25531924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface hydrogenation regulated wrinkling and torque capability of hydrogenated graphene annulus under circular shearing.
    Li Y; Liu S; Datta D; Li Z
    Sci Rep; 2015 Nov; 5():16556. PubMed ID: 26560202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenation-controlled mechanical properties in graphene helicoids: exceptional distribution-dependent behavior.
    Sharifian A; Moshfegh A; Javadzadegan A; Hassanzadeh Afrouzi H; Baghani M; Baniassadi M
    Phys Chem Chem Phys; 2019 Jun; 21(23):12423-12433. PubMed ID: 31143901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible basal plane hydrogenation of graphene.
    Ryu S; Han MY; Maultzsch J; Heinz TF; Kim P; Steigerwald ML; Brus LE
    Nano Lett; 2008 Dec; 8(12):4597-602. PubMed ID: 19053793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sandwich-Doping for a Large Schottky Barrier and Long-Term Stability in Graphene/Silicon Schottky Junction Solar Cells.
    Im MJ; Hyeong SK; Park M; Lee SK; Kim TW; Jung GY; Bae S
    ACS Omega; 2021 Feb; 6(5):3973-3979. PubMed ID: 33585774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When graphene meets ionic liquids: a good match for the design of functional materials.
    Aldroubi S; Brun N; Bou Malham I; Mehdi A
    Nanoscale; 2021 Feb; 13(5):2750-2779. PubMed ID: 33533392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding Large Graphene-on-Polymer Films Yields Laminated Composites with Enhanced Mechanical Performance.
    Wang B; Li Z; Wang C; Signetti S; Cunning BV; Wu X; Huang Y; Jiang Y; Shi H; Ryu S; Pugno NM; Ruoff RS
    Adv Mater; 2018 Aug; 30(35):e1707449. PubMed ID: 29992669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin thermoresponsive self-folding 3D graphene.
    Xu W; Qin Z; Chen CT; Kwag HR; Ma Q; Sarkar A; Buehler MJ; Gracias DH
    Sci Adv; 2017 Oct; 3(10):e1701084. PubMed ID: 28989963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective electrochemical functionalization of the graphene edge.
    Yadav A; Iost RM; Neubert TJ; Baylan S; Schmid T; Balasubramanian K
    Chem Sci; 2019 Jan; 10(3):936-942. PubMed ID: 30774888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A; Lahkar S; Li X; Li S; Ye H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-templated directional growth of an inorganic nanowire.
    Lee WC; Kim K; Park J; Koo J; Jeong HY; Lee H; Weitz DA; Zettl A; Takeuchi S
    Nat Nanotechnol; 2015 May; 10(5):423-8. PubMed ID: 25799519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of Mn atom on pristine and defected graphene: a density functional theory study.
    Anithaa VS; Shankar R; Vijayakumar S
    J Mol Model; 2017 Apr; 23(4):132. PubMed ID: 28337679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
    Kim S; Jung S; Lee J; Kim S; Fedorov AG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39595-39601. PubMed ID: 32805878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.