These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24196683)
1. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem. Morris DA; Johnson CF Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683 [TBL] [Abstract][Full Text] [Related]
2. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.). Johnson CF; Morris DA Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754 [TBL] [Abstract][Full Text] [Related]
3. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid. Johnson CF; Morris DA Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925 [TBL] [Abstract][Full Text] [Related]
4. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments. Morris DA; Johnson CF Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926 [TBL] [Abstract][Full Text] [Related]
5. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.) : Some implications for polarity and apical dominance. Morris DA Planta; 1977 Jan; 136(1):91-6. PubMed ID: 24420232 [TBL] [Abstract][Full Text] [Related]
6. Components of auxin transport in stem segments of Pisum sativum L. Davies PJ; Rubery PH Planta; 1978 Jan; 142(2):211-9. PubMed ID: 24408105 [TBL] [Abstract][Full Text] [Related]
7. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.). Wang G; Römheld V; Li C; Bangerth F J Plant Physiol; 2006 Apr; 163(6):591-600. PubMed ID: 16330125 [TBL] [Abstract][Full Text] [Related]
8. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin. Haga K; Iino M Plant Physiol; 1998 Aug; 117(4):1473-86. PubMed ID: 9701602 [TBL] [Abstract][Full Text] [Related]
9. Studies on the evolution of auxin carriers and phytotropin receptors: Transmembrane auxin transport in unicellular and multicellular Chlorophyta. Dibb-Fuller JE; Morris DA Planta; 1992 Jan; 186(2):219-26. PubMed ID: 24186661 [TBL] [Abstract][Full Text] [Related]
10. An assessment of auxin-promoted transport in decapitated stems and whole shoots of Phaseolus vulgaris L. Patrick JW Planta; 1979 Jan; 146(1):107-12. PubMed ID: 24317953 [TBL] [Abstract][Full Text] [Related]
11. Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. Koike I; Watanabe S; Okazaki K; Hayashi KI; Kasahara H; Shimomura K; Umehara M Planta; 2020 Mar; 251(3):73. PubMed ID: 32140780 [TBL] [Abstract][Full Text] [Related]
12. Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.). Jager CE; Symons GM; Glancy NE; Reid JB; Ross JJ Planta; 2007 Jul; 226(2):361-8. PubMed ID: 17308928 [TBL] [Abstract][Full Text] [Related]
13. Effects of temperature and sink activity on the transport of (14)C-labelled indol-3yl-acetic acid in the intact pea plant (Pisum sativum L.). Eliezer J; Morris DA Planta; 1979 Dec; 147(3):216-24. PubMed ID: 24311035 [TBL] [Abstract][Full Text] [Related]
14. The action of specific inhibitors of auxin transport on uptake of auxin and binding of N-1-naphthylphthalamic acid to a membrane site in maize coleoptiles. Sussman MR; Goldsmith MH Planta; 1981 May; 152(1):13-8. PubMed ID: 24302312 [TBL] [Abstract][Full Text] [Related]
15. Auxin carriers in Cucurbita vesicles : III. Specificity, with particular reference to 1-naphthylacetic acid. Sabater M; Rubery PH Planta; 1987 Aug; 171(4):514-8. PubMed ID: 24225714 [TBL] [Abstract][Full Text] [Related]
16. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid. Morris DA; Kadir GO; Barry AJ Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345 [TBL] [Abstract][Full Text] [Related]
17. Suitable experimental design for determination of auxin polar transport in space using a spacecraft. Shimazu T; Miyamoto K; Hoson T; Kamisaka S; Ueda J Biol Sci Space; 2000 Mar; 14(1):9-13. PubMed ID: 11543152 [TBL] [Abstract][Full Text] [Related]
18. Effect of Ethylene Treatment on Polar IAA Transport, Net IAA Uptake and Specific Binding of N-1-Naphthylphthalamic Acid in Tissues and Microsomes Isolated from Etiolated Pea Epicotyls. Suttle JC Plant Physiol; 1988 Nov; 88(3):795-9. PubMed ID: 16666386 [TBL] [Abstract][Full Text] [Related]
19. Auxin uptake and action of N-1-naphthylphthalamic acid in corn coleoptiles. Sussman MR; Goldsmith MH Planta; 1981 Jan; 151(1):15-25. PubMed ID: 24301665 [TBL] [Abstract][Full Text] [Related]
20. Cell length, light and(14)C-labelled indol-3yl-acetic acid transport inPisum satisum L. andPhaseolus vulgaris L. Eliezer J; Morris DA Planta; 1980 Jan; 149(4):327-31. PubMed ID: 24306367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]