BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24196693)

  • 1. Energy localization and frequency analysis in the locust ear.
    Malkin R; McDonagh TR; Mhatre N; Scott TS; Robert D
    J R Soc Interface; 2014 Jan; 11(90):20130857. PubMed ID: 24196693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tympanal travelling waves in migratory locusts.
    Windmill JF; Göpfert MC; Robert D
    J Exp Biol; 2005 Jan; 208(Pt 1):157-68. PubMed ID: 15601886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum.
    Nowotny M; Hummel J; Weber M; Möckel D; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Dec; 196(12):939-45. PubMed ID: 20827480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved tympanal mechanics of the locust.
    Windmill JF; Bockenhauer S; Robert D
    J R Soc Interface; 2008 Dec; 5(29):1435-43. PubMed ID: 18522928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical basis of otoacoustic emissions in tympanal hearing organs.
    Möckel D; Nowotny M; Kössl M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jul; 200(7):681-91. PubMed ID: 24817310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the drum: the mechanical basis for frequency discrimination in a Mediterranean cicada.
    Sueur J; Windmill JF; Robert D
    J Exp Biol; 2006 Oct; 209(Pt 20):4115-28. PubMed ID: 17023605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. No evidence for DPOAEs in the mechanical motion of the locust tympanum.
    Moir HM; Jackson JC; Windmill JF
    J Exp Biol; 2011 Oct; 214(Pt 19):3165-72. PubMed ID: 21900464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.
    Caldwell MS; Lee N; Schrode KM; Johns AR; Christensen-Dalsgaard J; Bee MA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Apr; 200(4):285-304. PubMed ID: 24504183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of age and noise on tympanal displacement in the Desert Locust.
    Austin TT; Woodrow C; Pinchin J; Montealegre-Z F; Warren B
    J Insect Physiol; 2024 Jan; 152():104595. PubMed ID: 38052320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sound sensations produced by electric stimulation of the structures of the middle ear and the tympanic chord].
    Michel J; Verain A
    Ann Otolaryngol Chir Cervicofac; 1975; 92(1-2):33-60. PubMed ID: 766693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional hearing by mechanical coupling in the parasitoid fly Ormia ochracea.
    Robert D; Miles RN; Hoy RR
    J Comp Physiol A; 1996; 179(1):29-44. PubMed ID: 8965258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual dimorphism in auditory mechanics: tympanal vibrations of Cicada orni.
    Sueur J; Windmill JF; Robert D
    J Exp Biol; 2008 Aug; 211(Pt 15):2379-87. PubMed ID: 18626071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound localization in the lizard using internally coupled ears: A finite-element approach.
    Livens P; Muyshondt PGG; Dirckx JJJ
    Hear Res; 2019 Jul; 378():23-32. PubMed ID: 30704801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
    Muyshondt PGG; Soons JAM; De Greef D; Pires F; Aerts P; Dirckx JJJ
    Hear Res; 2016 Oct; 340():35-42. PubMed ID: 26723104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis.
    Zhang J; Tian J; Ta N; Rao Z
    J Acoust Soc Am; 2019 Dec; 146(6):4122. PubMed ID: 31893738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.
    Cranford TW; Krysl P; Amundin M
    PLoS One; 2010 Aug; 5(8):e11927. PubMed ID: 20694149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internally coupled ears: mathematical structures and mechanisms underlying ICE.
    Vedurmudi AP; Young BA; van Hemmen JL
    Biol Cybern; 2016 Oct; 110(4-5):359-382. PubMed ID: 27778100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model.
    Yu YC; Wang TC; Shih TC
    Comput Methods Programs Biomed; 2022 Mar; 215():106619. PubMed ID: 35038652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy integration describes sound-intensity coding in an insect auditory system.
    Gollisch T; Schütze H; Benda J; Herz AV
    J Neurosci; 2002 Dec; 22(23):10434-48. PubMed ID: 12451143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.