These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 24196825)
41. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. Li JF; Yang ZL; Ren B; Liu GK; Fang PP; Jiang YX; Wu DY; Tian ZQ Langmuir; 2006 Dec; 22(25):10372-9. PubMed ID: 17129005 [TBL] [Abstract][Full Text] [Related]
42. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
43. Electrogenerated chemiluminescence of luminol in neutral and alkaline aqueous solutions on a silver nanoparticle self-assembled gold electrode. Wang CM; Cui H Luminescence; 2007; 22(1):35-45. PubMed ID: 16874848 [TBL] [Abstract][Full Text] [Related]
44. From single to multiple Ag-layer modification of Au nanocavity substrates: a tunable probe of the chemical surface-enhanced Raman scattering mechanism. Tognalli NG; Cortés E; Hernández-Nieves AD; Carro P; Usaj G; Balseiro CA; Vela ME; Salvarezza RC; Fainstein A ACS Nano; 2011 Jul; 5(7):5433-43. PubMed ID: 21675769 [TBL] [Abstract][Full Text] [Related]
45. [Progress in application of surface enhanced Raman scattering spectrum technique]. Luo ZX; Fang Y Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Feb; 26(2):358-64. PubMed ID: 16826926 [TBL] [Abstract][Full Text] [Related]
46. Imaging local electrochemical current via surface plasmon resonance. Shan X; Patel U; Wang S; Iglesias R; Tao N Science; 2010 Mar; 327(5971):1363-6. PubMed ID: 20223983 [TBL] [Abstract][Full Text] [Related]
47. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. Anema JR; Li JF; Yang ZL; Ren B; Tian ZQ Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():129-50. PubMed ID: 21370987 [TBL] [Abstract][Full Text] [Related]
48. High-precision measurement-based correlation studies among atomic force microscopy, Rayleigh scattering, and surface-enhanced Raman scattering at the single-molecule level. Lee HM; Lee JH; Kim HM; Jin SM; Park HS; Nam JM; Suh YD Phys Chem Chem Phys; 2013 Mar; 15(12):4243-9. PubMed ID: 23386278 [TBL] [Abstract][Full Text] [Related]
50. Overlayer surface-enhanced Raman spectroscopy for studying the electrodeposition and interfacial chemistry of ultrathin ge on a nanostructured support. Carim AI; Gu J; Maldonado S ACS Nano; 2011 Mar; 5(3):1818-30. PubMed ID: 21355608 [TBL] [Abstract][Full Text] [Related]
51. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Qian XM; Nie SM Chem Soc Rev; 2008 May; 37(5):912-20. PubMed ID: 18443676 [TBL] [Abstract][Full Text] [Related]
52. Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes. Liu B; Blaszczyk A; Mayor M; Wandlowski T ACS Nano; 2011 Jul; 5(7):5662-72. PubMed ID: 21634391 [TBL] [Abstract][Full Text] [Related]
53. Spatial and temporal variation of surface-enhanced Raman scattering at Ag nanowires in aqueous solution. Clayton DA; McPherson TE; Pan S; Chen M; Dixon DA; Hu D Phys Chem Chem Phys; 2013 Jan; 15(3):850-9. PubMed ID: 23202361 [TBL] [Abstract][Full Text] [Related]
55. Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra. Mullin J; Schatz GC J Phys Chem A; 2012 Mar; 116(8):1931-8. PubMed ID: 22283122 [TBL] [Abstract][Full Text] [Related]
56. Time-correlated Raman and fluorescence spectroscopy based on a silicon photomultiplier and time-correlated single photon counting technique. Zhang C; Zhang L; Yang R; Liang K; Han D Appl Spectrosc; 2013 Feb; 67(2):136-40. PubMed ID: 23622431 [TBL] [Abstract][Full Text] [Related]
57. Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. Wustholz KL; Brosseau CL; Casadio F; Van Duyne RP Phys Chem Chem Phys; 2009 Sep; 11(34):7350-9. PubMed ID: 19690705 [TBL] [Abstract][Full Text] [Related]
59. Electrochemical behavior and electrogenerated chemiluminescence of star-shaped D-A compounds with a 1,3,5-triazine core and substituted fluorene arms. Omer KM; Ku SY; Chen YC; Wong KT; Bard AJ J Am Chem Soc; 2010 Aug; 132(31):10944-52. PubMed ID: 20681728 [TBL] [Abstract][Full Text] [Related]
60. Recent advancements in optical DNA biosensors: exploiting the plasmonic effects of metal nanoparticles. Peng HI; Miller BL Analyst; 2011 Feb; 136(3):436-47. PubMed ID: 21049107 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]