These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24196944)

  • 1. Short-term changes in carbon-isotope discrimination identify transitions between C3 and C 4 carboxylation during Crassulacean acid metabolism.
    Griffiths H; Broadmeadow MS; Borland AM; Hetherington CS
    Planta; 1990 Jul; 181(4):604-10. PubMed ID: 24196944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term changes in carbon-isotope discrimination in the C
    Borland AM; Griffiths H; Broadmeadow MS; Fordham MC; Maxwell C
    Oecologia; 1993 Sep; 95(3):444-453. PubMed ID: 28314023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is crassulacean acid metabolism activity in sympatric species of hemi-epiphytic stranglers such as Clusia related to carbon cycling as a photoprotective process?
    Roberts A; Griffiths H; Borland AM; Reinert F
    Oecologia; 1996 Apr; 106(1):28-38. PubMed ID: 28307154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrimination Processes and Shifts in Carboxylation during the Phases of Crassulacean Acid Metabolism.
    Roberts A; Borland AM; Griffiths H
    Plant Physiol; 1997 Apr; 113(4):1283-1292. PubMed ID: 12223674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crassulacean acid metabolism species differ in the contribution of C
    van Tongerlo E; Trouwborst G; Hogewoning SW; van Ieperen W; Dieleman JA; Marcelis LFM
    Physiol Plant; 2021 May; 172(1):134-145. PubMed ID: 33305855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle.
    Griffiths H; Cousins AB; Badger MR; von Caemmerer S
    Plant Physiol; 2007 Feb; 143(2):1055-67. PubMed ID: 17142488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant Kalanchoe daigremontiana.
    Wild B; Wanek W; Postl W; Richter A
    J Exp Bot; 2010 Mar; 61(5):1375-83. PubMed ID: 20159885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature effects on the carbon-isotope ratio of C3, C 4 and crassulacean-acid-metabolism (CAM) plants.
    Troughton JH; Card KA
    Planta; 1975 Jan; 123(2):185-90. PubMed ID: 24435085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon isotope composition of biochemical fractions isolated from leaves of Bryophyllum daigremontianum berger, a plant with crassulacean acid metabolism: Some physiological aspects related to CO2 dark fixation.
    Deleens E; Garnier-Dardart J
    Planta; 1977 Jan; 135(3):241-8. PubMed ID: 24420090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term plasticity of crassulacean acid metabolism expression in the epiphytic bromeliad Tillandsia usneoides.
    Haslam R; Borland A; Griffiths H
    Funct Plant Biol; 2002 Jun; 29(6):749-756. PubMed ID: 32689522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM.
    Griffiths H; Smith JA
    Oecologia; 1983 Nov; 60(2):176-184. PubMed ID: 28310484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing carboxylases: circadian and metabolic regulation of Rubisco in C3 and CAM Mesembryanthemum crystallinum L.
    Davies BN; Griffiths H
    Plant Cell Environ; 2012 Jul; 35(7):1211-20. PubMed ID: 22239463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring molecular evolution of Rubisco in C
    Hermida-Carrera C; Fares MA; Font-Carrascosa M; Kapralov MV; Koch MA; Mir A; Molins A; Ribas-Carbó M; Rocha J; Galmés J
    BMC Evol Biol; 2020 Jan; 20(1):11. PubMed ID: 31969115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAM-physiology and carbon gain of the orchid Phalaenopsis in response to light intensity, light integral and CO
    Hogewoning SW; van den Boogaart SAJ; van Tongerlo E; Trouwborst G
    Plant Cell Environ; 2021 Mar; 44(3):762-774. PubMed ID: 33244775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. III: fitting of experimental data by a simple model.
    André MJ
    Biosystems; 2013 Aug; 113(2):104-14. PubMed ID: 23153764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological responses of the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae) to variations in light and water supply.
    Haslam R; Borland A; Maxwell K; Griffiths H
    J Plant Physiol; 2003 Jun; 160(6):627-34. PubMed ID: 12872484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass-spectrometric evidence for the double-carboxylation pathway of malate synthesis by Crassulacean acid metabolism plants in light.
    Ritz D; Kluge M; Veith HJ
    Planta; 1986 Feb; 167(2):284-91. PubMed ID: 24241864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on the regulation of C(3) and C (4) carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C(3)-CAM intermediate Clusia minor.
    Borland AM; Griffiths H
    Planta; 1997 Mar; 201(3):368-78. PubMed ID: 19343414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Achievable productivities of certain CAM plants: basis for high values compared with C
    Nobel PS
    New Phytol; 1991 Oct; 119(2):183-205. PubMed ID: 33874131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.