BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24197061)

  • 1. MicroRNA-194 (miR-194) regulates ROMK channel activity by targeting intersectin 1.
    Lin DH; Yue P; Zhang C; Wang WH
    Am J Physiol Renal Physiol; 2014 Jan; 306(1):F53-60. PubMed ID: 24197061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROMK channels are inhibited in the aldosterone-sensitive distal nephron of renal tubule Nedd4-2-deficient mice.
    Zhang DD; Zheng JY; Duan XP; Lin DH; Wang WH
    Am J Physiol Renal Physiol; 2022 Jan; 322(1):F55-F67. PubMed ID: 34843409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1.
    Lin DH; Yue P; Pan C; Sun P; Wang WH
    J Am Soc Nephrol; 2011 Jun; 22(6):1087-98. PubMed ID: 21566059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K
    Wu P; Gao ZX; Su XT; Ellison DH; Hadchouel J; Teulon J; Wang WH
    Am J Physiol Renal Physiol; 2018 Aug; 315(2):F223-F230. PubMed ID: 29667910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein phosphatase 1 modulates the inhibitory effect of With-no-Lysine kinase 4 on ROMK channels.
    Lin DH; Yue P; Rinehart J; Sun P; Wang Z; Lifton R; Wang WH
    Am J Physiol Renal Physiol; 2012 Jul; 303(1):F110-9. PubMed ID: 22513846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II type 2 receptor regulates ROMK-like K⁺ channel activity in the renal cortical collecting duct during high dietary K⁺ adaptation.
    Wei Y; Liao Y; Zavilowitz B; Ren J; Liu W; Chan P; Rohatgi R; Estilo G; Jackson EK; Wang WH; Satlin LM
    Am J Physiol Renal Physiol; 2014 Oct; 307(7):F833-43. PubMed ID: 25100281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels.
    Lin DH; Yue P; Pan CY; Sun P; Zhang X; Han Z; Roos M; Caplan M; Giebisch G; Wang WH
    J Biol Chem; 2009 Oct; 284(43):29614-24. PubMed ID: 19710010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal potassium channels: recent developments.
    Wang W
    Curr Opin Nephrol Hypertens; 2004 Sep; 13(5):549-55. PubMed ID: 15300162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct.
    Lin DH; Sterling H; Yang B; Hebert SC; Giebisch G; Wang WH
    Am J Physiol Renal Physiol; 2004 May; 286(5):F881-92. PubMed ID: 15075184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion.
    Babilonia E; Lin D; Zhang Y; Wei Y; Yue P; Wang WH
    J Am Soc Nephrol; 2007 Jul; 18(7):2037-45. PubMed ID: 17538186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of PI3-kinase stimulates endocytosis of ROMK via Akt1/SGK1-dependent phosphorylation of WNK1.
    Cheng CJ; Huang CL
    J Am Soc Nephrol; 2011 Mar; 22(3):460-71. PubMed ID: 21355052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney.
    Fang L; Garuti R; Kim BY; Wade JB; Welling PA
    J Clin Invest; 2009 Nov; 119(11):3278-89. PubMed ID: 19841541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ROMK (Kir1.1) channels: new mechanisms and aspects.
    Wang WH
    Am J Physiol Renal Physiol; 2006 Jan; 290(1):F14-9. PubMed ID: 16339961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel dual-fluorescence strategy for functionally validating microRNA targets in 3' untranslated regions: regulation of the inward rectifier potassium channel K(ir)2.1 by miR-212.
    Goldoni D; Yarham JM; McGahon MK; O'Connor A; Guduric-Fuchs J; Edgar K; McDonald DM; Simpson DA; Collins A
    Biochem J; 2012 Nov; 448(1):103-13. PubMed ID: 22880819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of ROMK channels by protein tyrosine kinase and tyrosine phosphatase.
    Wang WH; Lin DH; Sterling H
    Trends Cardiovasc Med; 2002 Apr; 12(3):138-42. PubMed ID: 12007740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD.
    Zhang Y; Lin DH; Wang ZJ; Jin Y; Yang B; Wang WH
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C765-73. PubMed ID: 18184875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct.
    Chu PY; Quigley R; Babich V; Huang CL
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1179-87. PubMed ID: 12952855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation.
    Zhang X; Lin DH; Jin Y; Wang KS; Zhang Y; Babilonia E; Wang Z; Wang Z; Giebisch G; Han ZG; Wang WH
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9517-22. PubMed ID: 17517644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Src family protein tyrosine kinase (PTK) modulates the effect of SGK1 and WNK4 on ROMK channels.
    Yue P; Lin DH; Pan CY; Leng Q; Giebisch G; Lifton RP; Wang WH
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):15061-6. PubMed ID: 19706464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of high-dietary K
    Meng XX; Zhang H; Meng GL; Jiang SP; Duan XP; Wang WH; Wang MX
    Front Physiol; 2022; 13():1039029. PubMed ID: 36439248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.