These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 24197131)
1. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Kudo K; Imai C; Lorenzini P; Kamiya T; Kono K; Davidoff AM; Chng WJ; Campana D Cancer Res; 2014 Jan; 74(1):93-103. PubMed ID: 24197131 [TBL] [Abstract][Full Text] [Related]
2. Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Chen Y; You F; Jiang L; Li J; Zhu X; Bao Y; Sun X; Tang X; Meng H; An G; Zhang B; Yang L Oncotarget; 2017 Jun; 8(23):37128-37139. PubMed ID: 28415754 [TBL] [Abstract][Full Text] [Related]
3. V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs--rituximab and trastuzumab. Tokuyama H; Hagi T; Mattarollo SR; Morley J; Wang Q; So HF; Moriyasu F; Nieda M; Nicol AJ Int J Cancer; 2008 Jun; 122(11):2526-34. PubMed ID: 18307255 [TBL] [Abstract][Full Text] [Related]
5. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Imai C; Mihara K; Andreansky M; Nicholson IC; Pui CH; Geiger TL; Campana D Leukemia; 2004 Apr; 18(4):676-84. PubMed ID: 14961035 [TBL] [Abstract][Full Text] [Related]
6. Development of Engineered T Cells Expressing a Chimeric CD16-CD3ζ Receptor to Improve the Clinical Efficacy of Mogamulizumab Therapy Against Adult T-Cell Leukemia. Tanaka H; Fujiwara H; Ochi F; Tanimoto K; Casey N; Okamoto S; Mineno J; Kuzushima K; Shiku H; Sugiyama T; Barrett AJ; Yasukawa M Clin Cancer Res; 2016 Sep; 22(17):4405-16. PubMed ID: 27091408 [TBL] [Abstract][Full Text] [Related]
7. Gene-modified human α/β-T cells expressing a chimeric CD16-CD3ζ receptor as adoptively transferable effector cells for anticancer monoclonal antibody therapy. Ochi F; Fujiwara H; Tanimoto K; Asai H; Miyazaki Y; Okamoto S; Mineno J; Kuzushima K; Shiku H; Barrett J; Ishii E; Yasukawa M Cancer Immunol Res; 2014 Mar; 2(3):249-62. PubMed ID: 24778321 [TBL] [Abstract][Full Text] [Related]
8. Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Kim JA; Averbook BJ; Chambers K; Rothchild K; Kjaergaard J; Papay R; Shu S Cancer Res; 2001 Mar; 61(5):2031-7. PubMed ID: 11280763 [TBL] [Abstract][Full Text] [Related]
9. Bispecific anti-HER2 and CD16 single-chain antibody production prolongs the use of stem cell-like cell transplantation against HER2-overexpressing cancer. Kasuya K; Shimazu M; Suzuki M; Itoi T; Aoki T; Tsuchida A Int J Mol Med; 2010 Feb; 25(2):209-15. PubMed ID: 20043129 [TBL] [Abstract][Full Text] [Related]
10. High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. Rataj F; Jacobi SJ; Stoiber S; Asang F; Ogonek J; Tokarew N; Cadilha BL; van Puijenbroek E; Heise C; Duewell P; Endres S; Klein C; Kobold S Br J Cancer; 2019 Jan; 120(1):79-87. PubMed ID: 30429531 [TBL] [Abstract][Full Text] [Related]
11. Combination of adoptive immunotherapy with Herceptin for patients with HER2-expressing breast cancer. Kubo M; Morisaki T; Kuroki H; Tasaki A; Yamanaka N; Matsumoto K; Nakamura K; Onishi H; Baba E; Katano M Anticancer Res; 2003; 23(6a):4443-9. PubMed ID: 14666732 [TBL] [Abstract][Full Text] [Related]
12. IL-2Ralpha-Directed monoclonal antibodies provide effective therapy in a murine model of adult T-cell leukemia by a mechanism other than blockade of IL-2/IL-2Ralpha interaction. Phillips KE; Herring B; Wilson LA; Rickford MS; Zhang M; Goldman CK; Tso JY; Waldmann TA Cancer Res; 2000 Dec; 60(24):6977-84. PubMed ID: 11156399 [TBL] [Abstract][Full Text] [Related]
13. T lymphocytes engineered to express a CD16-chimeric antigen receptor redirect T-cell immune responses against immunoglobulin G-opsonized target cells. D'Aloia MM; Caratelli S; Palumbo C; Battella S; Arriga R; Lauro D; Palmieri G; Sconocchia G; Alimandi M Cytotherapy; 2016 Feb; 18(2):278-90. PubMed ID: 26705740 [TBL] [Abstract][Full Text] [Related]
14. A functional role for CD28 costimulation in tumor recognition by single-chain receptor-modified T cells. Moeller M; Haynes NM; Trapani JA; Teng MW; Jackson JT; Tanner JE; Cerutti L; Jane SM; Kershaw MH; Smyth MJ; Darcy PK Cancer Gene Ther; 2004 May; 11(5):371-9. PubMed ID: 15060573 [TBL] [Abstract][Full Text] [Related]
15. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Sanchez-Paulete AR; Labiano S; Rodriguez-Ruiz ME; Azpilikueta A; Etxeberria I; Bolaños E; Lang V; Rodriguez M; Aznar MA; Jure-Kunkel M; Melero I Eur J Immunol; 2016 Mar; 46(3):513-22. PubMed ID: 26773716 [TBL] [Abstract][Full Text] [Related]
16. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Zhang T; Barber A; Sentman CL Cancer Res; 2006 Jun; 66(11):5927-33. PubMed ID: 16740733 [TBL] [Abstract][Full Text] [Related]
17. Activated T-cell-mediated immunotherapy with a chimeric receptor against CD38 in B-cell non-Hodgkin lymphoma. Mihara K; Yanagihara K; Takigahira M; Imai C; Kitanaka A; Takihara Y; Kimura A J Immunother; 2009 Sep; 32(7):737-43. PubMed ID: 19561535 [TBL] [Abstract][Full Text] [Related]
18. Stimulated γδ T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. Capietto AH; Martinet L; Fournié JJ J Immunol; 2011 Jul; 187(2):1031-8. PubMed ID: 21670311 [TBL] [Abstract][Full Text] [Related]
19. Tumor growth suppression by a mouse/human chimeric anti-CEA antibody and lymphokine-activated killer cells in vitro and in SCID mouse xenograft model. Senba T; Kuroki M; Arakawa F; Yamamoto T; Kuwahara M; Haruno M; Ikeda S; Matsuoka Y Anticancer Res; 1998; 18(1A):17-24. PubMed ID: 9568050 [TBL] [Abstract][Full Text] [Related]
20. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Kowolik CM; Topp MS; Gonzalez S; Pfeiffer T; Olivares S; Gonzalez N; Smith DD; Forman SJ; Jensen MC; Cooper LJ Cancer Res; 2006 Nov; 66(22):10995-1004. PubMed ID: 17108138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]