BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24197209)

  • 1. Factors controlling lead bioavailability in the Butte mining district, Montana, USA.
    Davis A; Ruby MV; Bergstrom PD
    Environ Geochem Health; 1994 Dec; 16(3-4):147-57. PubMed ID: 24197209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of weathering product assemblages on Pb bioaccessibility in mine waste: implications for risk management.
    Palumbo-Roe B; Wragg J; Cave MR; Wagner D
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7699-710. PubMed ID: 23381798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative bioavailability of lead from mining waste soil in rats.
    Freeman GB; Johnson JD; Killinger JM; Liao SC; Feder PI; Davis AO; Ruby MV; Chaney RL; Lovre SC; Bergstrom PD
    Fundam Appl Toxicol; 1992 Oct; 19(3):388-98. PubMed ID: 1459371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cross scale investigation of galena oxidation and controls on mobilization of lead in mine waste rock.
    Bao Z; Al T; Couillard M; Poirier G; Bain J; Shrimpton HK; Finfrock YZ; Lanzirotti A; Paktunc D; Saurette E; Hu Y; Ptacek CJ; Blowes DW
    J Hazard Mater; 2021 Jun; 412():125130. PubMed ID: 33529829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado.
    Eusden JD; Gallagher L; Eighmy TT; Crannell BS; Krzanowski JR; Butler LG; Cartledge FK; Emery EF; Shaw EL; Francis CA
    Waste Manag; 2002; 22(2):117-35. PubMed ID: 12004827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.
    Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M
    Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution.
    Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T
    Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo: the role of oral bioaccessibility and mineralogy in human PHE exposure.
    Boisa N; Bird G; Brewer PA; Dean JR; Entwistle JA; Kemp SJ; Macklin MG
    Environ Int; 2013 Oct; 60():56-70. PubMed ID: 24013020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (Na, Pb)-Jarosite nucleation and growth on anglesite: Implications for inhibition of Pb releasing.
    Shi M; Min X; Zhang W; Li K; Wu J; Ai Z; Ke Y; Wang Q; Yan X
    Sci Total Environ; 2023 Nov; 901():165972. PubMed ID: 37532039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute bioavailability of lead acetate and mining waste lead in rats.
    Freeman GB; Johnson JD; Liao SC; Feder PI; Davis AO; Ruby MV; Schoof RA; Chaney RL; Bergstrom PD
    Toxicology; 1994 Jul; 91(2):151-63. PubMed ID: 8059439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings.
    Roussel C; Néel C; Bril H
    Sci Total Environ; 2000 Dec; 263(1-3):209-19. PubMed ID: 11194154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The positive environmental contribution of jarosite by retaining lead in acid mine drainage areas.
    Figueiredo MO; da Silva TP
    Int J Environ Res Public Health; 2011 May; 8(5):1575-82. PubMed ID: 21655138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental stability and oral bioaccessibility of synthetic Pb-bearing phases to better evaluate soil health risks.
    Monneron-Gyurits M; Joussein E; Soubrand M; Fondanèche P; Cléries K; Ducloux E; Courtin-Nomade A
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12215-12226. PubMed ID: 31989498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccessibility tests accurately estimate bioavailability of lead to quail.
    Beyer WN; Basta NT; Chaney RL; Henry PF; Mosby DE; Rattner BA; Scheckel KG; Sprague DT; Weber JS
    Environ Toxicol Chem; 2016 Sep; 35(9):2311-9. PubMed ID: 26876015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil.
    Bosso ST; Enzweiler J
    Environ Geochem Health; 2008 Jun; 30(3):219-29. PubMed ID: 17786569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece.
    Argyraki A
    Environ Geochem Health; 2014 Aug; 36(4):677-92. PubMed ID: 24292695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids.
    Kastury F; Karna RR; Scheckel KG; Juhasz AL
    Environ Pollut; 2020 Aug; 263(Pt B):. PubMed ID: 33633430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead phosphate formation in soils.
    Cotter-Howells J
    Environ Pollut; 1996; 93(1):9-16. PubMed ID: 15091364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.