These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24197353)

  • 1. Variation amongst Brassica juncea cultivars for regeneration from hypocotyl explants and optimization of conditions for Agrobacterium-mediated genetic transformation.
    Pental D; Pradhan AK; Sodhi YS; Mukhopadhyay A
    Plant Cell Rep; 1993 May; 12(7-8):462-7. PubMed ID: 24197353
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Gerszberg A; Hnatuszko-Konka K; Kowalczyk T
    In Vitro Cell Dev Biol Plant; 2015; 51(1):80-87. PubMed ID: 25774081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation.
    Barfield DG; Pua EC
    Plant Cell Rep; 1991 Sep; 10(6-7):308-14. PubMed ID: 24221663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.
    Kumar P; Srivastava DK
    Physiol Mol Biol Plants; 2015 Apr; 21(2):279-85. PubMed ID: 25964720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis).
    Zhang FL; Takahata Y; Watanabe M; Xu JB
    Plant Cell Rep; 2000 May; 19(6):569-575. PubMed ID: 30754819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens.
    Radke SE; Turner JC; Facciotti D
    Plant Cell Rep; 1992 Sep; 11(10):499-505. PubMed ID: 24213157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium-mediated genetic transformation of oilseed Brassica campestris: Transformation frequency is strongly influenced by the mode of shoot regeneration.
    Mukhopadhyay A; Arumugam N; Nandakumar PB; Pradhan AK; Gupta V; Pental D
    Plant Cell Rep; 1992 Sep; 11(10):506-13. PubMed ID: 24213158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of Brassica napus (canola) explant regeneration for genetic transformation.
    Maheshwari P; Selvaraj G; Kovalchuk I
    N Biotechnol; 2011 Dec; 29(1):144-55. PubMed ID: 21722759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.
    Ravanfar SA; Aziz MA; Saud HM; Abdullah JO
    Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regeneration of transgenic plants from two indica rice (Oryza sativa L.) cultivars using shoot apex explants.
    Arockiasamy S; Ignacimuthu S
    Plant Cell Rep; 2007 Oct; 26(10):1745-53. PubMed ID: 17593368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indian mustard [Brassica juncea (L.) Czern.].
    Gasic K; Korban SS
    Methods Mol Biol; 2006; 343():281-9. PubMed ID: 16988352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants.
    Nishibayashi S; Kaneko H; Hayakawa T
    Plant Cell Rep; 1996 Aug; 15(11):809-14. PubMed ID: 24178213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved plant regeneration and Agrobacterium - mediated transformation of red pepper (Capsicum annuum L.).
    Kumar RV; Sharma VK; Chattopadhyay B; Chakraborty S
    Physiol Mol Biol Plants; 2012 Oct; 18(4):357-64. PubMed ID: 24082498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasible regeneration and agro bacterium-mediated transformation of
    Naeem I; Munir I; Durrett TP; Iqbal A; Aulakh KS; Ahmad MA; Khan H; Khan IA; Hussain F; Shuaib M; Shah AA; Muhammad I; Bahadur S; Begim K; Hussain F
    Saudi J Biol Sci; 2020 May; 27(5):1324-1332. PubMed ID: 32346342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta.
    Gupta V; Ur Rahman L
    Protoplasma; 2015 Jul; 252(4):1061-70. PubMed ID: 25504508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic transformation of Brassica nigra by agrobacterium based vector and direct plasmid uptake.
    Gupta V; Lakshmi Sita G; Shaila MS; Jagannathan V
    Plant Cell Rep; 1993 May; 12(7-8):418-21. PubMed ID: 24197344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector.
    Anuradha TS; Jami SK; Datla RS; Kirti PB
    J Biosci; 2006 Jun; 31(2):235-46. PubMed ID: 16809856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium-mediated transformation of niger [ Guizotia abyssinica (L. f.) Cass.] using seedling explants.
    Murthy HN; Jeong JH; Choi YE; Paek KY
    Plant Cell Rep; 2003 Aug; 21(12):1183-7. PubMed ID: 12789496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L.
    Malik MQ; Mujib A; Gulzar B; Zafar N; Syeed R; Mamgain J; Ejaz B
    J Appl Genet; 2020 Feb; 61(1):25-35. PubMed ID: 31919659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration.
    Du N; Pijut PM
    Plant Cell Rep; 2009 Jun; 28(6):915-23. PubMed ID: 19343350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.