These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 2419767)
1. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Beam KG; Knudson CM; Powell JA Nature; 1986 Mar 13-19; 320(6058):168-70. PubMed ID: 2419767 [TBL] [Abstract][Full Text] [Related]
2. Restoration of dysgenic muscle contraction and calcium channel function by co-culture with normal spinal cord neurons. Rieger F; Bournaud R; Shimahara T; Garcia L; Pinçon-Raymond M; Romey G; Lazdunski M Nature; 1987 Dec 10-16; 330(6148):563-6. PubMed ID: 2446145 [TBL] [Abstract][Full Text] [Related]
3. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Takeshima H; Iino M; Takekura H; Nishi M; Kuno J; Minowa O; Takano H; Noda T Nature; 1994 Jun; 369(6481):556-9. PubMed ID: 7515481 [TBL] [Abstract][Full Text] [Related]
4. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Rios E; Brum G Nature; 1987 Feb 19-25; 325(6106):717-20. PubMed ID: 2434854 [TBL] [Abstract][Full Text] [Related]
5. Cardiac-type excitation-contraction coupling in dysgenic skeletal muscle injected with cardiac dihydropyridine receptor cDNA. Tanabe T; Mikami A; Numa S; Beam KG Nature; 1990 Mar; 344(6265):451-3. PubMed ID: 2157159 [TBL] [Abstract][Full Text] [Related]
6. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Tanabe T; Beam KG; Powell JA; Numa S Nature; 1988 Nov; 336(6195):134-9. PubMed ID: 2903448 [TBL] [Abstract][Full Text] [Related]
7. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. Ito K; Komazaki S; Sasamoto K; Yoshida M; Nishi M; Kitamura K; Takeshima H J Cell Biol; 2001 Sep; 154(5):1059-67. PubMed ID: 11535622 [TBL] [Abstract][Full Text] [Related]
8. Regulation of muscle contraction and relaxation in heart. Fleischer S; Inui M Prog Clin Biol Res; 1988; 273():435-50. PubMed ID: 3047748 [TBL] [Abstract][Full Text] [Related]
9. Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype. Airey JA; Deerinck TJ; Ellisman MH; Houenou LJ; Ivanenko A; Kenyon JL; McKemy DD; Sutko JL Dev Dyn; 1993 Jul; 197(3):189-202. PubMed ID: 8219360 [TBL] [Abstract][Full Text] [Related]
10. Excitation-contraction coupling from the 1950s into the new millennium. Dulhunty AF Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804 [TBL] [Abstract][Full Text] [Related]
11. [Differentiational profiles of skeletal muscle internal membrane systems directly related to excitation-contraction coupling]. Takekura H; Yoshioka T Nihon Seirigaku Zasshi; 1993; 55(10):392-405. PubMed ID: 8277433 [TBL] [Abstract][Full Text] [Related]
12. A genetic model for the study of abnormal nerve-muscle interactions at the level of excitation-contraction coupling: the mutation muscular dysgenesis. Pinçon-Raymond M; García L; Romey G; Houenou L; Lazdunski M; Rieger F J Physiol (Paris); 1990; 84(1):82-7. PubMed ID: 2193149 [TBL] [Abstract][Full Text] [Related]
13. [Slow asymmetric currents and ultrastructure of tubulo-reticular contacts in the muscle fibers of the crayfish]. Genchek M; Zakhar I; Zakharova D; Ugrik V; Novotova M Neirofiziologiia; 1984; 16(5):612-9. PubMed ID: 6096735 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of excitation-contraction coupling in skinned muscle fibers. Donaldson SK Med Sci Sports Exerc; 1989 Aug; 21(4):411-7. PubMed ID: 2674592 [TBL] [Abstract][Full Text] [Related]
15. The role of membrane processes in controlling skeletal muscle function. Kovács L Acta Physiol Acad Sci Hung; 1981; 57(1):1-8. PubMed ID: 6269349 [TBL] [Abstract][Full Text] [Related]
16. Myoblast fusion is not a prerequisite for the appearance of calcium current, calcium release, and contraction in rat skeletal muscle cells developing in culture. Constantin B; Cognard C; Raymond G Exp Cell Res; 1995 Apr; 217(2):497-505. PubMed ID: 7698251 [TBL] [Abstract][Full Text] [Related]
17. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells. Vali S; Carlsen R; Pessah I; Gorin F J Cell Physiol; 2000 Nov; 185(2):184-99. PubMed ID: 11025440 [TBL] [Abstract][Full Text] [Related]
18. [Characteristics of functioning of electromechanical coupling in striated muscles of higher and lower vertebrates]. Nasledov GA; Katina IE; Zhitnikova IuV Biofizika; 2002; 47(4):716-27. PubMed ID: 12298213 [TBL] [Abstract][Full Text] [Related]
19. Purification and reconstitution of the calcium release channel from skeletal muscle. Lai FA; Erickson HP; Rousseau E; Liu QY; Meissner G Nature; 1988 Jan; 331(6154):315-9. PubMed ID: 2448641 [TBL] [Abstract][Full Text] [Related]
20. Excitation-contraction coupling in isolated locomotor muscle fibres from the pelagic tunicate Doliolum which lack both sarcoplasmic reticulum and transverse tubular system. Inoue I; Tsutsui I; Bone Q J Comp Physiol B; 2002 Aug; 172(6):541-6. PubMed ID: 12192516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]