These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 24197691)
21. Network Cluster Analysis of Protein-Protein Interaction Network-Identified Biomarker for Type 2 Diabetes. Li Z; Qiao Z; Zheng W; Ma W Diabetes Technol Ther; 2015 Jul; 17(7):475-81. PubMed ID: 25879401 [TBL] [Abstract][Full Text] [Related]
22. Identification of a five-gene signature with prognostic value in colorectal cancer. Sun G; Li Y; Peng Y; Lu D; Zhang F; Cui X; Zhang Q; Li Z J Cell Physiol; 2019 Apr; 234(4):3829-3836. PubMed ID: 30132881 [TBL] [Abstract][Full Text] [Related]
23. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036 [TBL] [Abstract][Full Text] [Related]
24. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. Li J; Wang Y; Wang X; Yang Q World J Surg Oncol; 2020 Mar; 18(1):50. PubMed ID: 32127012 [TBL] [Abstract][Full Text] [Related]
25. Identification of Critical Genes and Five Prognostic Biomarkers Associated with Colorectal Cancer. Huang Z; Yang Q; Huang Z Med Sci Monit; 2018 Jul; 24():4625-4633. PubMed ID: 29973580 [TBL] [Abstract][Full Text] [Related]
26. Identification of key genes involved in the development and progression of early-onset colorectal cancer by co-expression network analysis. Mo X; Su Z; Yang B; Zeng Z; Lei S; Qiao H Oncol Lett; 2020 Jan; 19(1):177-186. PubMed ID: 31897128 [TBL] [Abstract][Full Text] [Related]
27. Integrative Gene Expression Profiling Analysis to Investigate Potential Prognostic Biomarkers for Colorectal Cancer. Liu X; Bing Z; Wu J; Zhang J; Zhou W; Ni M; Meng Z; Liu S; Tian J; Zhang X; Li Y; Jia S; Guo S Med Sci Monit; 2020 Jan; 26():e918906. PubMed ID: 31893510 [TBL] [Abstract][Full Text] [Related]
28. Identification of potential hub genes via bioinformatics analysis combined with experimental verification in colorectal cancer. Zhou H; Yang Z; Yue J; Chen Y; Chen T; Mu T; Liu H; Bi X Mol Carcinog; 2020 Apr; 59(4):425-438. PubMed ID: 32064687 [TBL] [Abstract][Full Text] [Related]
29. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis. Zheng Z; Xie J; Xiong L; Gao M; Qin L; Dai C; Liang Z; Wang Y; Xue J; Wang Q; Wang W; Li X Med Oncol; 2020 Oct; 37(11):104. PubMed ID: 33078282 [TBL] [Abstract][Full Text] [Related]
30. Protein-protein interaction analysis of distinct molecular pathways in two subtypes of colorectal carcinoma. Chen H; Fang Y; Zhu H; Li S; Wang T; Gu P; Fang X; Wu Y; Liang J; Zeng Y; Zhang L; Qiu W; Zhang L; Yi X Mol Med Rep; 2014 Dec; 10(6):2868-74. PubMed ID: 25242495 [TBL] [Abstract][Full Text] [Related]
31. Integration of gene expression data identifies key genes and pathways in colorectal cancer. Hozhabri H; Lashkari A; Razavi SM; Mohammadian A Med Oncol; 2021 Jan; 38(1):7. PubMed ID: 33411100 [TBL] [Abstract][Full Text] [Related]
32. Application of weighted gene co‑expression network analysis to explore the potential diagnostic biomarkers for colorectal cancer. Qin L; Zeng J; Shi N; Chen L; Wang L Mol Med Rep; 2020 Jun; 21(6):2533-2543. PubMed ID: 32323816 [TBL] [Abstract][Full Text] [Related]
33. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis. Dai GP; Wang LP; Wen YQ; Ren XQ; Zuo SG Oncol Lett; 2020 Jan; 19(1):388-398. PubMed ID: 31897151 [TBL] [Abstract][Full Text] [Related]
34. A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer. Yang WJ; Wang HB; Wang WD; Bai PY; Lu HX; Sun CH; Liu ZS; Guan DK; Yang GW; Zhang GL Cancer Med; 2020 Jan; 9(1):179-193. PubMed ID: 31724326 [TBL] [Abstract][Full Text] [Related]
35. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data. Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618 [TBL] [Abstract][Full Text] [Related]
36. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
37. Transcriptome analysis of potential candidate genes and molecular pathways in colitis-associated colorectal cancer of Mkp-1-deficient mice. Hammad A; Zheng ZH; Namani A; Elshaer M; Wang XJ; Tang X BMC Cancer; 2021 May; 21(1):607. PubMed ID: 34034704 [TBL] [Abstract][Full Text] [Related]
38. Identification of genes involved in the four stages of colorectal cancer: Gene expression profiling. Shi G; Wang Y; Zhang C; Zhao Z; Sun X; Zhang S; Fan J; Zhou C; Zhang J; Zhang H; Liu J Mol Cell Probes; 2018 Feb; 37():39-47. PubMed ID: 29179987 [TBL] [Abstract][Full Text] [Related]
39. Discovery of the Anti-Tumor Mechanism of Calycosin Against Colorectal Cancer by Using System Pharmacology Approach. Huang C; Li R; Shi W; Huang Z Med Sci Monit; 2019 Jul; 25():5589-5593. PubMed ID: 31352466 [TBL] [Abstract][Full Text] [Related]
40. Microarray gene expression profiling and bioinformatics analysis reveal key differentially expressed genes in clival and sacral chordoma cell lines. Li G; Cai L; Zhou L Neurol Res; 2019 Jun; 41(6):554-561. PubMed ID: 30821656 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]