BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 2419772)

  • 1. Response of rat small intestinal active aldohexose transport to elevation of mucosal cyclic AMP by forskolin and 3-isobutyl-1-methylxanthine in vitro.
    Reymann A; Braun W; Woermann C
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Dec; 331(4):384-92. PubMed ID: 2419772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forskolin-induced elevation of rat jejunal cyclic AMP levels and stimulation of active glucose transport in vitro.
    Reymann A; Braun W; Bergheim M; Hissnauer K
    Naunyn Schmiedebergs Arch Pharmacol; 1985 Jan; 328(3):317-23. PubMed ID: 2984587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of bile acid active transport related to increased mucosal cyclic AMP content in rat ileum in vitro.
    Reymann A; Braun W; Drobik C; Woermann C
    Biochim Biophys Acta; 1989 May; 1011(2-3):158-64. PubMed ID: 2469477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proabsorptive properties of forskolin: disposition of glycine, leucine and lysine in rat jejunum.
    Reymann A; Braun W; Woermann C
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Sep; 334(1):110-5. PubMed ID: 3024021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resensitization of hepatocyte glucagon-stimulated adenylate cyclase can be inhibited when cyclic AMP phosphodiesterase inhibitors are used to elevate intracellular cyclic AMP concentrations to supraphysiological values.
    Murphy GJ; Houslay MD
    Biochem J; 1988 Jan; 249(2):543-7. PubMed ID: 2449179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-adrenergic receptor mechanisms in rat parotid glands: activation by nerve stimulation and 3-isobutyl-1-methylxanthine.
    Fuller CM; Gallacher DV
    J Physiol; 1984 Nov; 356():335-48. PubMed ID: 6084058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of the effects of dopamine in the rabbit isolated splenic artery by 3-isobutyl-1-methylxanthine or forskolin.
    Clark KL; Drew GM; Hilditch A
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Nov; 340(5):533-40. PubMed ID: 2482447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic AMP-dependent protein phosphorylation and insulin secretion in intact islets of Langerhans.
    Christie MR; Ashcroft SJ
    Biochem J; 1984 Feb; 218(1):87-99. PubMed ID: 6201163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed stimulation of bone resorption in vitro by phosphodiesterase inhibitors requires the presence of adenylate cyclase stimulation.
    Ransjö M; Fredholm BB; Lerner UH
    Bone Miner; 1988 Jan; 3(3):225-34. PubMed ID: 2462948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional coupling between the active transport of glucose and the secretion of intestinal neurotensin in rats.
    Dakka T; Cuber JC; Chayvialle JA
    J Physiol; 1993 Sep; 469():753-65. PubMed ID: 7505826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulation of glucose transport by cAMP stimulators via three different mechanisms in rat and human adipocytes.
    Kashiwagi A; Huecksteadt TP; Foley JE
    J Biol Chem; 1983 Nov; 258(22):13685-92. PubMed ID: 6196354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the effects of 3-isobutyl-1-methylxanthine and adenosine cyclic 3':5'-monophosphate on the induction of skin tumors by the initiation-promotion protocol and by the complete carcinogenesis process.
    Perchellet JP; Boutwell RK
    Carcinogenesis; 1982; 3(1):53-60. PubMed ID: 6175435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostacyclin biosynthesis in vascular endothelium is not inhibited by cyclic AMP. Studies with 3-isobutyl-1-methylxanthine and forskolin.
    Brotherton AF; Macfarlane DE; Hoak JC
    Thromb Res; 1982 Dec; 28(5):637-47. PubMed ID: 6188229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cyclic AMP in the release of noradrenaline from isolated rat atria. Effect of pretreatment with clenbuterol.
    Kazanietz MG; Enero MA
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Sep; 346(3):311-4. PubMed ID: 1383833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation by forskolin of both SNP- and ANP-stimulated cyclic GMP accumulation in porcine isolated palmar lateral vein.
    Wright IK; Amirchetty-Rao S; Kendall DA
    Br J Pharmacol; 1994 Aug; 112(4):1146-50. PubMed ID: 7524992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of P1075-induced K+ channel opening by stimulation of adenylate cyclase in rat isolated aorta.
    Linde C; Quast U
    Br J Pharmacol; 1995 Jun; 115(3):515-21. PubMed ID: 7582466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of phosphodiesterase inhibitors on accumulation of cyclic AMP in isolated ventricular cardiomyocytes.
    Kelso EJ; McDermott BJ; Silke B
    Biochem Pharmacol; 1995 Feb; 49(4):441-52. PubMed ID: 7872950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of glucose transporter gene expression by cyclic adenosine monophosphate in NIH3T3 fibroblasts.
    Hiraki Y; McMorrow IM; Birnbaum MJ
    Mol Endocrinol; 1989 Sep; 3(9):1470-6. PubMed ID: 2481819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of phosphodiesterase inhibition and of carbachol on inotropic effects of 8-substituted cyclic AMP analogues.
    Korth M; Engels J; Schäfer-Korting M
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Feb; 335(2):166-75. PubMed ID: 2436059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arachidonic acid metabolism in cultured aortic endothelial cells. Effect of cAMP and 3-isobutyl-1-methylxanthine.
    Whorton AR; Collawn JB; Montgomery ME; Young SL; Kent RS
    Biochem Pharmacol; 1985 Jan; 34(1):119-23. PubMed ID: 2578280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.