BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24197932)

  • 21. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation.
    Rhie SK; Schreiner S; Witt H; Armoskus C; Lay FD; Camarena A; Spitsyna VN; Guo Y; Berman BP; Evgrafov OV; Knowles JA; Farnham PJ
    Sci Adv; 2018 Dec; 4(12):eaav8550. PubMed ID: 30555922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrative computational epigenomics to build data-driven gene regulation hypotheses.
    Chen T; Tyagi S
    Gigascience; 2020 Jun; 9(6):. PubMed ID: 32543653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feature subset selection for splice site prediction.
    Degroeve S; De Baets B; Van de Peer Y; Rouzé P
    Bioinformatics; 2002; 18 Suppl 2():S75-83. PubMed ID: 12385987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The MspJI family of modification-dependent restriction endonucleases for epigenetic studies.
    Cohen-Karni D; Xu D; Apone L; Fomenkov A; Sun Z; Davis PJ; Kinney SR; Yamada-Mabuchi M; Xu SY; Davis T; Pradhan S; Roberts RJ; Zheng Y
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11040-5. PubMed ID: 21690366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential regulatory activity prediction across chromosomes with convolutional neural networks.
    Kelley DR; Reshef YA; Bileschi M; Belanger D; McLean CY; Snoek J
    Genome Res; 2018 May; 28(5):739-750. PubMed ID: 29588361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial intelligence analysis of newborn leucocyte epigenomic markers for the prediction of autism.
    Bahado-Singh RO; Vishweswaraiah S; Aydas B; Mishra NK; Yilmaz A; Guda C; Radhakrishna U
    Brain Res; 2019 Dec; 1724():146457. PubMed ID: 31521637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional conservation of sequence determinants at rapidly evolving regulatory regions across mammals.
    Huh I; Mendizabal I; Park T; Yi SV
    PLoS Comput Biol; 2018 Oct; 14(10):e1006451. PubMed ID: 30289877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders.
    Wang Z; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):568. PubMed ID: 31760935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing DNA Methylation Patterns During Tumor Evolution.
    Pan H; Elemento O
    Methods Mol Biol; 2018; 1711():27-53. PubMed ID: 29344884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Machine learning study of DNA binding by transcription factors from the LacI family].
    Fedonin GG; Rakhmaninova AB; Korostelev IuD; Laĭkova ON; Gel'fand MS
    Mol Biol (Mosk); 2011; 45(4):724-37. PubMed ID: 21954606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiling the Epigenetic Landscape of the Spermatogonial Stem Cell-Part 1: Epigenomics Assays.
    Cheng K; McCarrey JR
    Methods Mol Biol; 2023; 2656():71-108. PubMed ID: 37249867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The SEQC2 epigenomics quality control (EpiQC) study.
    Foox J; Nordlund J; Lalancette C; Gong T; Lacey M; Lent S; Langhorst BW; Ponnaluri VKC; Williams L; Padmanabhan KR; Cavalcante R; Lundmark A; Butler D; Mozsary C; Gurvitch J; Greally JM; Suzuki M; Menor M; Nasu M; Alonso A; Sheridan C; Scherer A; Bruinsma S; Golda G; Muszynska A; Łabaj PP; Campbell MA; Wos F; Raine A; Liljedahl U; Axelsson T; Wang C; Chen Z; Yang Z; Li J; Yang X; Wang H; Melnick A; Guo S; Blume A; Franke V; Ibanez de Caceres I; Rodriguez-Antolin C; Rosas R; Davis JW; Ishii J; Megherbi DB; Xiao W; Liao W; Xu J; Hong H; Ning B; Tong W; Akalin A; Wang Y; Deng Y; Mason CE
    Genome Biol; 2021 Dec; 22(1):332. PubMed ID: 34872606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational epigenetics.
    Bock C; Lengauer T
    Bioinformatics; 2008 Jan; 24(1):1-10. PubMed ID: 18024971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic analysis: ChIP-chip and ChIP-seq.
    Pellegrini M; Ferrari R
    Methods Mol Biol; 2012; 802():377-87. PubMed ID: 22130894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigenomics in the single cell era, an important read out for genome function and cell identity.
    Pinheiro I; Torres-Padilla ME; Almouzni G
    Epigenomics; 2021 Jul; 13(13):981-984. PubMed ID: 34114476
    [No Abstract]   [Full Text] [Related]  

  • 37. Using Markov chains of nucleotide sequences as a possible precursor to predict functional roles of human genome: a case study on inactive chromatin regions.
    Lee KE; Lee EJ; Park HS
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alignment-free genetic sequence comparisons: a review of recent approaches by word analysis.
    Bonham-Carter O; Steele J; Bastola D
    Brief Bioinform; 2014 Nov; 15(6):890-905. PubMed ID: 23904502
    [TBL] [Abstract][Full Text] [Related]  

  • 39. JMnorm: a novel joint multi-feature normalization method for integrative and comparative epigenomics.
    Xiang G; Guo Y; Bumcrot D; Sigova A
    Nucleic Acids Res; 2024 Jan; 52(2):e11. PubMed ID: 38055833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational micromodel for epigenetic mechanisms.
    Raghavan K; Ruskin HJ; Perrin D; Goasmat F; Burns J
    PLoS One; 2010 Nov; 5(11):e14031. PubMed ID: 21152421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.