BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 24198246)

  • 1. Strand invasion by HLTF as a mechanism for template switch in fork rescue.
    Burkovics P; Sebesta M; Balogh D; Haracska L; Krejci L
    Nucleic Acids Res; 2014 Feb; 42(3):1711-20. PubMed ID: 24198246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fork-Remodeling Helicase Rad5 Preferentially Reverses Replication Forks with Gaps in the Leading Strand.
    Ling JA; Gildenberg MS; Honda M; Kondratick CM; Spies M; Washington MT
    J Mol Biol; 2023 Feb; 435(4):167946. PubMed ID: 36623584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression.
    Blastyák A; Pintér L; Unk I; Prakash L; Prakash S; Haracska L
    Mol Cell; 2007 Oct; 28(1):167-75. PubMed ID: 17936713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperation of RAD51 and RAD54 in regression of a model replication fork.
    Bugreev DV; Rossi MJ; Mazin AV
    Nucleic Acids Res; 2011 Mar; 39(6):2153-64. PubMed ID: 21097884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.
    Hampp S; Kiessling T; Buechle K; Mansilla SF; Thomale J; Rall M; Ahn J; Pospiech H; Gottifredi V; Wiesmüller L
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4311-9. PubMed ID: 27407148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance.
    Unk I; Hajdú I; Blastyák A; Haracska L
    DNA Repair (Amst); 2010 Mar; 9(3):257-67. PubMed ID: 20096653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks.
    Motegi A; Liaw HJ; Lee KY; Roest HP; Maas A; Wu X; Moinova H; Markowitz SD; Ding H; Hoeijmakers JH; Myung K
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12411-6. PubMed ID: 18719106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA.
    Blastyák A; Hajdú I; Unk I; Haracska L
    Mol Cell Biol; 2010 Feb; 30(3):684-93. PubMed ID: 19948885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance.
    Hishiki A; Hara K; Ikegaya Y; Yokoyama H; Shimizu T; Sato M; Hashimoto H
    J Biol Chem; 2015 May; 290(21):13215-23. PubMed ID: 25858588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helicase-Like Transcription Factor HLTF and E3 Ubiquitin Ligase SHPRH Confer DNA Damage Tolerance through Direct Interactions with Proliferating Cell Nuclear Antigen (PCNA).
    Seelinger M; Otterlei M
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
    Chavez DA; Greer BH; Eichman BF
    J Biol Chem; 2018 Jun; 293(22):8484-8494. PubMed ID: 29643183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
    Torres-Ramos CA; Prakash S; Prakash L
    Mol Cell Biol; 2002 Apr; 22(7):2419-26. PubMed ID: 11884624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.
    Ball LG; Xu X; Blackwell S; Hanna MD; Lambrecht AD; Xiao W
    DNA Repair (Amst); 2014 Apr; 16():74-83. PubMed ID: 24674630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
    Gangavarapu V; Prakash S; Prakash L
    Mol Cell Biol; 2007 Nov; 27(21):7758-64. PubMed ID: 17785441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chromatin assembly factor 1 promotes Rad51-dependent template switches at replication forks by counteracting D-loop disassembly by the RecQ-type helicase Rqh1.
    Pietrobon V; Fréon K; Hardy J; Costes A; Iraqui I; Ochsenbein F; Lambert SA
    PLoS Biol; 2014 Oct; 12(10):e1001968. PubMed ID: 25313826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MutSα deficiency increases tolerance to DNA damage in yeast lacking postreplication repair.
    Berg IL; Persson JO; Åström SU
    DNA Repair (Amst); 2020; 91-92():102870. PubMed ID: 32470850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork.
    Kanagaraj R; Saydam N; Garcia PL; Zheng L; Janscak P
    Nucleic Acids Res; 2006; 34(18):5217-31. PubMed ID: 17003056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast.
    Gangavarapu V; Santa Maria SR; Prakash S; Prakash L
    mBio; 2011; 2(3):e00079-11. PubMed ID: 21586645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of HIRAN domain of human HLTF bound to duplex DNA provides structural basis for DNA unwinding to initiate replication fork regression.
    Hishiki A; Sato M; Hashimoto H
    J Biochem; 2020 Jun; 167(6):597-602. PubMed ID: 31960921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterisation of the SWI/SNF family member HLTF.
    MacKay C; Toth R; Rouse J
    Biochem Biophys Res Commun; 2009 Dec; 390(2):187-91. PubMed ID: 19723507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.