BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24198279)

  • 1. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme.
    Lee RT; Nagai H; Nakaya Y; Sheng G; Trainor PA; Weston JA; Thiery JP
    Development; 2013 Dec; 140(24):4890-902. PubMed ID: 24198279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis.
    Weston JA; Yoshida H; Robinson V; Nishikawa S; Fraser ST; Nishikawa S
    Dev Dyn; 2004 Jan; 229(1):118-30. PubMed ID: 14699583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reassessing the embryonic origin and potential of craniofacial ectomesenchyme.
    Fabian P; Crump JG
    Semin Cell Dev Biol; 2023 Mar; 138():45-53. PubMed ID: 35331627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Wnt signalling in the development of somites and neural crest.
    Schmidt C; McGonnell I; Allen S; Patel K
    Adv Anat Embryol Cell Biol; 2008; 195():1-64. PubMed ID: 18637521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nonneural epithelial domain of embryonic cranial neural folds gives rise to ectomesenchyme.
    Breau MA; Pietri T; Stemmler MP; Thiery JP; Weston JA
    Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7750-5. PubMed ID: 18515427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The issue of the multipotency of the neural crest cells.
    Dupin E; Calloni GW; Coelho-Aguiar JM; Le Douarin NM
    Dev Biol; 2018 Dec; 444 Suppl 1():S47-S59. PubMed ID: 29614271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restricted response of mesencephalic neural crest to sympathetic differentiation signals in the trunk.
    Lee VM; Bronner-Fraser M; Baker CV
    Dev Biol; 2005 Feb; 278(1):175-92. PubMed ID: 15649470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasticity and predetermination of mesencephalic and trunk neural crest transplanted into the region of the cardiac neural crest.
    Kirby ML
    Dev Biol; 1989 Aug; 134(2):402-12. PubMed ID: 2744240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of neural crest-derived clones reveals novel aspects of facial development.
    Kaucka M; Ivashkin E; Gyllborg D; Zikmund T; Tesarova M; Kaiser J; Xie M; Petersen J; Pachnis V; Nicolis SK; Yu T; Sharpe P; Arenas E; Brismar H; Blom H; Clevers H; Suter U; Chagin AS; Fried K; Hellander A; Adameyko I
    Sci Adv; 2016 Aug; 2(8):e1600060. PubMed ID: 27493992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural crest and mesoderm lineage-dependent gene expression in orofacial development.
    Bhattacherjee V; Mukhopadhyay P; Singh S; Johnson C; Philipose JT; Warner CP; Greene RM; Pisano MM
    Differentiation; 2007 Jun; 75(5):463-77. PubMed ID: 17286603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shared evolutionary origin of vertebrate neural crest and cranial placodes.
    Horie R; Hazbun A; Chen K; Cao C; Levine M; Horie T
    Nature; 2018 Aug; 560(7717):228-232. PubMed ID: 30069052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest.
    Taneyhill LA; Coles EG; Bronner-Fraser M
    Development; 2007 Apr; 134(8):1481-90. PubMed ID: 17344227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate.
    Leung AW; Murdoch B; Salem AF; Prasad MS; Gomez GA; García-Castro MI
    Development; 2016 Feb; 143(3):398-410. PubMed ID: 26839343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early acquisition of neural crest competence during hESCs neuralization.
    Curchoe CL; Maurer J; McKeown SJ; Cattarossi G; Cimadamore F; Nilbratt M; Snyder EY; Bronner-Fraser M; Terskikh AV
    PLoS One; 2010 Nov; 5(11):e13890. PubMed ID: 21085480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphogenesis of the cranial segments and distribution of neural crest in the embryos of the snapping turtle, Chelydra serpentina.
    Meier S; Packard DS
    Dev Biol; 1984 Apr; 102(2):309-23. PubMed ID: 6706002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical role for Cadherin6B in regulating avian neural crest emigration.
    Coles EG; Taneyhill LA; Bronner-Fraser M
    Dev Biol; 2007 Dec; 312(2):533-44. PubMed ID: 17991460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadherin-6B proteolytic N-terminal fragments promote chick cranial neural crest cell delamination by regulating extracellular matrix degradation.
    Schiffmacher AT; Adomako-Ankomah A; Xie V; Taneyhill LA
    Dev Biol; 2018 Dec; 444 Suppl 1(Suppl 1):S237-S251. PubMed ID: 29958899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro analysis of mouse mesencephalic neural crest development.
    Ito K; Fujita K
    Curr Protoc Neurosci; 2011 Jul; Chapter 3():Unit 3.23. PubMed ID: 21732313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The histogenetic potential of neural plate cells of early-somite-stage mouse embryos.
    Chan WY; Tam PP
    J Embryol Exp Morphol; 1986 Jul; 96():183-93. PubMed ID: 3805982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest.
    Cox SG; Kim H; Garnett AT; Medeiros DM; An W; Crump JG
    PLoS Genet; 2012 Sep; 8(9):e1002938. PubMed ID: 23028350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.