These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
693 related articles for article (PubMed ID: 24198283)
1. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing-remitting multiple sclerosis. Zhang X; Tao Y; Chopra M; Ahn M; Marcus KL; Choudhary N; Zhu H; Markovic-Plese S J Immunol; 2013 Dec; 191(12):5867-74. PubMed ID: 24198283 [TBL] [Abstract][Full Text] [Related]
2. Alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Hersh CM; Cohen JA Immunotherapy; 2014; 6(3):249-59. PubMed ID: 24762071 [TBL] [Abstract][Full Text] [Related]
3. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. von Kutzleben S; Pryce G; Giovannoni G; Baker D Immunology; 2017 Apr; 150(4):444-455. PubMed ID: 27925187 [TBL] [Abstract][Full Text] [Related]
4. The outlook for alemtuzumab in multiple sclerosis. Williams T; Coles A; Azzopardi L BioDrugs; 2013 Jun; 27(3):181-9. PubMed ID: 23558379 [TBL] [Abstract][Full Text] [Related]
5. Alemtuzumab: evidence for its potential in relapsing-remitting multiple sclerosis. Brown JW; Coles AJ Drug Des Devel Ther; 2013; 7():131-8. PubMed ID: 23494602 [TBL] [Abstract][Full Text] [Related]
6. Immune mechanisms of new therapeutic strategies in multiple sclerosis-A focus on alemtuzumab. Klotz L; Meuth SG; Wiendl H Clin Immunol; 2012 Jan; 142(1):25-30. PubMed ID: 21550857 [TBL] [Abstract][Full Text] [Related]
7. Repopulation of T, B, and NK cells following alemtuzumab treatment in relapsing-remitting multiple sclerosis. Gilmore W; Lund BT; Li P; Levy AM; Kelland EE; Akbari O; Groshen S; Cen SY; Pelletier D; Weiner LP; Javed A; Dunn JE; Traboulsee AL J Neuroinflammation; 2020 Jun; 17(1):189. PubMed ID: 32539719 [TBL] [Abstract][Full Text] [Related]
8. Reconstitution of the T-cell repertoire following treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with B-cell chronic lymphocytic leukaemia. Rezvany MR; Tehrani MJ; Karlsson C; Lundin J; Rabbani H; Osterborg A; Mellstedt H Br J Haematol; 2006 Nov; 135(4):475-85. PubMed ID: 16995884 [TBL] [Abstract][Full Text] [Related]
9. Immunity 12 years after alemtuzumab in RA: CD5⁺ B-cell depletion, thymus-dependent T-cell reconstitution and normal vaccine responses. Anderson AE; Lorenzi AR; Pratt A; Wooldridge T; Diboll J; Hilkens CM; Isaacs JD Rheumatology (Oxford); 2012 Aug; 51(8):1397-406. PubMed ID: 22447884 [TBL] [Abstract][Full Text] [Related]
10. Therapeutic Effect of Anti-CD52 Monoclonal Antibody in Multiple Sclerosis and Its Animal Models Is Mediated via T Regulatory Cells. Kiapour N; Wu B; Wang Y; Seyedsadr M; Kapoor S; Zhang X; Elzoheiry M; Kasimoglu E; Wan Y; Markovic-Plese S J Immunol; 2022 Jul; 209(1):49-56. PubMed ID: 35750335 [TBL] [Abstract][Full Text] [Related]
11. Time-dependent cytokine deviation toward the Th2 side in Japanese multiple sclerosis patients with interferon beta-1b. Ochi H; Feng-Jun M; Osoegawa M; Minohara M; Murai H; Taniwaki T; Kira J J Neurol Sci; 2004 Jul; 222(1-2):65-73. PubMed ID: 15240198 [TBL] [Abstract][Full Text] [Related]
12. Alemtuzumab (Compath) off-label for relapsing multiple sclerosis. Med Lett Drugs Ther; 2009 Mar; 51(1307):17-8. PubMed ID: 19265776 [No Abstract] [Full Text] [Related]
14. The role of endogenous IFN-β in the regulation of Th17 responses in patients with relapsing-remitting multiple sclerosis. Tao Y; Zhang X; Chopra M; Kim MJ; Buch KR; Kong D; Jin J; Tang Y; Zhu H; Jewells V; Markovic-Plese S J Immunol; 2014 Jun; 192(12):5610-7. PubMed ID: 24850724 [TBL] [Abstract][Full Text] [Related]
15. Interpreting Lymphocyte Reconstitution Data From the Pivotal Phase 3 Trials of Alemtuzumab. Baker D; Herrod SS; Alvarez-Gonzalez C; Giovannoni G; Schmierer K JAMA Neurol; 2017 Aug; 74(8):961-969. PubMed ID: 28604916 [TBL] [Abstract][Full Text] [Related]
16. [Alemtuzumab, a monoclonal antibody against CD52: hopes and fears]. Mori M Brain Nerve; 2014 Oct; 66(10):1179-89. PubMed ID: 25296872 [TBL] [Abstract][Full Text] [Related]
17. Impact of alemtuzumab treatment on the survival and function of human regulatory T cells in vitro. Havari E; Turner MJ; Campos-Rivera J; Shankara S; Nguyen TH; Roberts B; Siders W; Kaplan JM Immunology; 2014 Jan; 141(1):123-31. PubMed ID: 24116901 [TBL] [Abstract][Full Text] [Related]
18. Monocyte-derived HLA-G acts as a strong inhibitor of autologous CD4 T cell activation and is upregulated by interferon-beta in vitro and in vivo: rationale for the therapy of multiple sclerosis. Mitsdoerffer M; Schreiner B; Kieseier BC; Neuhaus O; Dichgans J; Hartung HP; Weller M; Wiendl H J Neuroimmunol; 2005 Feb; 159(1-2):155-64. PubMed ID: 15652415 [TBL] [Abstract][Full Text] [Related]
19. Alemtuzumab more effective than interferon β-1a at 5-year follow-up of CAMMS223 clinical trial. Coles AJ; Fox E; Vladic A; Gazda SK; Brinar V; Selmaj KW; Skoromets A; Stolyarov I; Bass A; Sullivan H; Margolin DH; Lake SL; Moran S; Palmer J; Smith MS; Compston DA Neurology; 2012 Apr; 78(14):1069-78. PubMed ID: 22442431 [TBL] [Abstract][Full Text] [Related]
20. Th17 central memory T cells are reduced by FTY720 in patients with multiple sclerosis. Mehling M; Lindberg R; Raulf F; Kuhle J; Hess C; Kappos L; Brinkmann V Neurology; 2010 Aug; 75(5):403-10. PubMed ID: 20592255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]