These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24198323)

  • 1. Slowly emerging glycinergic transmission enhances inhibition in the sound localization pathway of the avian auditory system.
    Fischl MJ; Weimann SR; Kearse MG; Burger RM
    J Neurophysiol; 2014 Feb; 111(3):565-72. PubMed ID: 24198323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycinergic transmission modulates GABAergic inhibition in the avian auditory pathway.
    Fischl MJ; Burger RM
    Front Neural Circuits; 2014; 8():19. PubMed ID: 24672432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous kinetics and pharmacology of synaptic inhibition in the chick auditory brainstem.
    Kuo SP; Bradley LA; Trussell LO
    J Neurosci; 2009 Jul; 29(30):9625-34. PubMed ID: 19641125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris.
    Yamada R; Okuda H; Kuba H; Nishino E; Ishii TM; Ohmori H
    J Neurosci; 2013 Feb; 33(9):3927-38. PubMed ID: 23447603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick.
    Brückner S; Hyson RL
    Eur J Neurosci; 1998 Nov; 10(11):3438-50. PubMed ID: 9824457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic and glycinergic inhibition modulate monaural auditory response properties in the avian superior olivary nucleus.
    Coleman WL; Fischl MJ; Weimann SR; Burger RM
    J Neurophysiol; 2011 May; 105(5):2405-20. PubMed ID: 21368002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition.
    Pecka M; Brand A; Behrend O; Grothe B
    J Neurosci; 2008 Jul; 28(27):6914-25. PubMed ID: 18596166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of GABAergic and glycinergic inhibition on binaural processing in the dorsal nucleus of the lateral lemniscus of the mustache bat.
    Yang L; Pollak GD
    J Neurophysiol; 1994 Jun; 71(6):1999-2013. PubMed ID: 7931498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal specializations for the processing of interaural difference cues in the chick.
    Ohmori H
    Front Neural Circuits; 2014; 8():47. PubMed ID: 24847212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics that specialize neurons for high-frequency coincidence detection in the barn owl nucleus laminaris.
    Drucker B; Goldwyn JH
    Biol Cybern; 2023 Apr; 117(1-2):143-162. PubMed ID: 37129628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem.
    Yang L; Monsivais P; Rubel EW
    J Neurosci; 1999 Mar; 19(6):2313-25. PubMed ID: 10066281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset.
    Magnusson AK; Kapfer C; Grothe B; Koch U
    J Physiol; 2005 Oct; 568(Pt 2):497-512. PubMed ID: 16096336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
    Higgs MH; Kuznetsova MS; Spain WJ
    J Neurosci; 2012 Oct; 32(44):15489-94. PubMed ID: 23115186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A developmental shift from GABAergic to glycinergic transmission in the central auditory system.
    Kotak VC; Korada S; Schwartz IR; Sanes DH
    J Neurosci; 1998 Jun; 18(12):4646-55. PubMed ID: 9614239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization.
    Nishino E; Yamada R; Kuba H; Hioki H; Furuta T; Kaneko T; Ohmori H
    J Neurosci; 2008 Jul; 28(28):7153-64. PubMed ID: 18614685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo.
    Kuba H; Koyano K; Ohmori H
    Eur J Neurosci; 2002 Mar; 15(6):984-90. PubMed ID: 11918658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coincidence detection by binaural neurons in the chick brain stem.
    Joseph AW; Hyson RL
    J Neurophysiol; 1993 Apr; 69(4):1197-211. PubMed ID: 8492159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit.
    Lu Y; Liu Y; Curry RJ
    J Physiol; 2018 May; 596(10):1981-1997. PubMed ID: 29572827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdependence of spatial and temporal coding in the auditory midbrain.
    Koch U; Grothe B
    J Neurophysiol; 2000 Apr; 83(4):2300-14. PubMed ID: 10758135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.