These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 24198499)

  • 1. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?
    Panariti A; Miserocchi G; Rivolta I
    Nanotechnol Sci Appl; 2012 Sep; 5():87-100. PubMed ID: 24198499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Cell Interactions of Non-Cationic Bionanomaterials.
    Ho LWC; Liu Y; Han R; Bai Q; Choi CHJ
    Acc Chem Res; 2019 Jun; 52(6):1519-1530. PubMed ID: 31058496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically Designed Nanoscale Materials for Controlling Cellular Processes.
    Debnath K; Pal S; Jana NR
    Acc Chem Res; 2021 Jul; 54(14):2916-2927. PubMed ID: 34232016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity.
    Deng J; Gao C
    Nanotechnology; 2016 Oct; 27(41):412002. PubMed ID: 27609340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems.
    Yoo J; Park C; Yi G; Lee D; Koo H
    Cancers (Basel); 2019 May; 11(5):. PubMed ID: 31072061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probe the nanoparticle-nucleus interaction
    Zhang L; Liu N; Wang X
    Phys Chem Chem Phys; 2023 Nov; 25(44):30319-30329. PubMed ID: 37908190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cellular uptake and long-term retention of chitosan-modified iron-oxide nanoparticles for MRI-based cell tracking.
    Bakhru SH; Altiok E; Highley C; Delubac D; Suhan J; Hitchens TK; Ho C; Zappe S
    Int J Nanomedicine; 2012; 7():4613-23. PubMed ID: 22942643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-delivery of Docetaxel and Disulfonate Tetraphenyl Chlorin in One Nanoparticle Produces Strong Synergism between Chemo- and Photodynamic Therapy in Drug-Sensitive and -Resistant Cancer Cells.
    Gaio E; Conte C; Esposito D; Miotto G; Quaglia F; Moret F; Reddi E
    Mol Pharm; 2018 Oct; 15(10):4599-4611. PubMed ID: 30148955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery.
    Delehanty JB; Boeneman K; Bradburne CE; Robertson K; Bongard JE; Medintz IL
    Ther Deliv; 2010 Sep; 1(3):411-33. PubMed ID: 22816144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles cellular uptake, trafficking, activation, toxicity and
    Toscano F; Torres-Arias M
    Curr Res Immunol; 2023; 4():100073. PubMed ID: 38020531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications.
    Li L; Xing H; Zhang J; Lu Y
    Acc Chem Res; 2019 Sep; 52(9):2415-2426. PubMed ID: 31411853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatory interpretation of protein corona and shear stress for active cancer targeting of bioorthogonally clickable gelatin-oleic nanoparticles.
    Meghani NM; Amin H; Park C; Cui JH; Cao QR; Choi KH; Lee BJ
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110760. PubMed ID: 32279783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake.
    Lamichhane SP; Arya N; Ojha N; Kohler E; Shastri VP
    Int J Nanomedicine; 2015; 10():775-89. PubMed ID: 25632234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
    Bayda S; Hadla M; Palazzolo S; Riello P; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4269-4303. PubMed ID: 29284391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicological assessment of nanoparticle interactions with the pulmonary system.
    Osman NM; Sexton DW; Saleem IY
    Nanotoxicology; 2020 Feb; 14(1):21-58. PubMed ID: 31502904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    PLoS One; 2011; 6(9):e24438. PubMed ID: 21949717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.