These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 24199694)
21. Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Berg JM; Ho S; Hwang W; Zebda R; Cummins K; Soriaga MP; Taylor R; Guo B; Sayes CM Chem Res Toxicol; 2010 Dec; 23(12):1874-82. PubMed ID: 21067130 [TBL] [Abstract][Full Text] [Related]
22. Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress. Hsu NS; Tehei M; Hossain MS; Rosenfeld A; Shiddiky MJA; Sluyter R; Dou SX; Yamauchi Y; Konstantinov K ACS Appl Mater Interfaces; 2021 Jan; 13(2):2204-2217. PubMed ID: 33399455 [TBL] [Abstract][Full Text] [Related]
23. Co₃O₄ nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. Dong J; Song L; Yin JJ; He W; Wu Y; Gu N; Zhang Y ACS Appl Mater Interfaces; 2014 Feb; 6(3):1959-70. PubMed ID: 24387092 [TBL] [Abstract][Full Text] [Related]
24. A novel bioactive nanoparticle synthesized by conjugation of 3-chloropropyl trimethoxy silane functionalized Fe Habibzadeh SZ; Salehzadeh A; Moradi-Shoeili Z; Shandiz SAS Mol Biol Rep; 2020 Mar; 47(3):1637-1647. PubMed ID: 31933263 [TBL] [Abstract][Full Text] [Related]
25. Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy. Kou L; Sun R; Xiao S; Zheng Y; Chen Z; Cai A; Zheng H; Yao Q; Ganapathy V; Chen R ACS Appl Mater Interfaces; 2019 Jul; 11(30):26722-26730. PubMed ID: 31276364 [TBL] [Abstract][Full Text] [Related]
26. A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core-shell Fe Yang W; Li J; Wang M; Sun X; Liu Y; Yang J; Ng DHL Colloids Surf B Biointerfaces; 2020 Apr; 188():110742. PubMed ID: 31881409 [TBL] [Abstract][Full Text] [Related]
27. Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid. Li JJ; Tang Q; Li Y; Hu BR; Ming ZY; Fu Q; Qian JQ; Xiang JZ Acta Pharmacol Sin; 2006 Aug; 27(8):1078-84. PubMed ID: 16867262 [TBL] [Abstract][Full Text] [Related]
28. Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe Xu Z; Li L; Li K; Chen ML; Tu J; Chen W; Zhu SH; Cheng YH Mikrochim Acta; 2021 Nov; 188(12):421. PubMed ID: 34787714 [TBL] [Abstract][Full Text] [Related]
29. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. Vallabani NVS; Vinu A; Singh S; Karakoti A J Colloid Interface Sci; 2020 May; 567():154-164. PubMed ID: 32045737 [TBL] [Abstract][Full Text] [Related]
30. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Ahamed M; Ali D; Alhadlaq HA; Akhtar MJ Chemosphere; 2013 Nov; 93(10):2514-22. PubMed ID: 24139157 [TBL] [Abstract][Full Text] [Related]
31. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Meeran SM; Katiyar S; Katiyar SK Toxicol Appl Pharmacol; 2008 May; 229(1):33-43. PubMed ID: 18275980 [TBL] [Abstract][Full Text] [Related]
32. Core-shell Fe3O4 polydopamine nanoparticles serve multipurpose as drug carrier, catalyst support and carbon adsorbent. Liu R; Guo Y; Odusote G; Qu F; Priestley RD ACS Appl Mater Interfaces; 2013 Sep; 5(18):9167-71. PubMed ID: 24010676 [TBL] [Abstract][Full Text] [Related]
33. A monocarbonyl analogue of curcumin, 1,5-bis(3-hydroxyphenyl)-1,4-pentadiene-3-one (Ca 37), exhibits potent growth suppressive activity and enhances the inhibitory effect of curcumin on human prostate cancer cells. Luo C; Li Y; Zhou B; Yang L; Li H; Feng Z; Li Y; Long J; Liu J Apoptosis; 2014 Mar; 19(3):542-53. PubMed ID: 24297639 [TBL] [Abstract][Full Text] [Related]
34. Dehydroascorbic acid prevents oxidative cell death through a glutathione pathway in primary astrocytes. Kim EJ; Park YG; Baik EJ; Jung SJ; Won R; Nahm TS; Lee BH J Neurosci Res; 2005 Mar; 79(5):670-9. PubMed ID: 15668957 [TBL] [Abstract][Full Text] [Related]
35. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Fang J; Seki T; Maeda H Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331 [TBL] [Abstract][Full Text] [Related]
36. Oxidative stress in prostate cancer: changing research concepts towards a novel paradigm for prevention and therapeutics. Paschos A; Pandya R; Duivenvoorden WC; Pinthus JH Prostate Cancer Prostatic Dis; 2013 Sep; 16(3):217-25. PubMed ID: 23670256 [TBL] [Abstract][Full Text] [Related]
37. Biogenic magnetic nanoparticles from Burkholderia sp. YN01 exhibiting intrinsic peroxidase-like activity and their applications. Pan Y; Li N; Mu J; Zhou R; Xu Y; Cui D; Wang Y; Zhao M Appl Microbiol Biotechnol; 2015 Jan; 99(2):703-15. PubMed ID: 25030455 [TBL] [Abstract][Full Text] [Related]
38. Advances in metal-induced oxidative stress and human disease. Jomova K; Valko M Toxicology; 2011 May; 283(2-3):65-87. PubMed ID: 21414382 [TBL] [Abstract][Full Text] [Related]
39. Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy. Dong Y; Wang S; Zhang T; Zhao X; Liu X; Cao L; Chi Z Brain Res; 2013 Oct; 1535():115-23. PubMed ID: 23994218 [TBL] [Abstract][Full Text] [Related]
40. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent. Park S; Kwon B; Yang W; Han E; Yoo W; Kwon BM; Lee D J Control Release; 2014 Dec; 196():19-27. PubMed ID: 25278257 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]