These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24200011)

  • 1. Specific responses to nitrogen and phosphorus enrichment in cyanobacteria: factors influencing changes in species dominance along eutrophic gradients.
    Loza V; Perona E; Mateo P
    Water Res; 2014 Jan; 48():622-31. PubMed ID: 24200011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy.
    Paerl HW; Xu H; McCarthy MJ; Zhu G; Qin B; Li Y; Gardner WS
    Water Res; 2011 Feb; 45(5):1973-83. PubMed ID: 20934736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient-Controlled Niche Differentiation of Western Lake Erie Cyanobacterial Populations Revealed via Metatranscriptomic Surveys.
    Harke MJ; Davis TW; Watson SB; Gobler CJ
    Environ Sci Technol; 2016 Jan; 50(2):604-15. PubMed ID: 26654276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nutrient level on phytoplankton community structure in different water bodies.
    Zhu W; Wan L; Zhao L
    J Environ Sci (China); 2010; 22(1):32-9. PubMed ID: 20397384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoplankton growth control and risk of cyanobacterial blooms in the lower Senegal River delta region.
    Quiblier C; Leboulanger C; Sané S; Dufour P
    Water Res; 2008 Feb; 42(4-5):1023-34. PubMed ID: 17959218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios.
    Chislock MF; Sharp KL; Wilson AE
    Water Res; 2014 Feb; 49():207-14. PubMed ID: 24333522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unabated Nitrogen Pollution Favors Growth of Toxic Cyanobacteria over Chlorophytes in Most Hypereutrophic Lakes.
    Bogard MJ; Vogt RJ; Hayes NM; Leavitt PR
    Environ Sci Technol; 2020 Mar; 54(6):3219-3227. PubMed ID: 32077281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal variability of river periphyton below a hypereutrophic lake and a series of dams.
    Gillett ND; Pan Y; Eli Asarian J; Kann J
    Sci Total Environ; 2016 Jan; 541():1382-1392. PubMed ID: 26479912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SHIFT FROM CHLOROPHYTES TO CYANOBACTERIA IN BENTHIC MACROALGAE ALONG A GRADIENT OF NITRATE DEPLETION(1).
    Vis C; Cattaneo A; Hudon C
    J Phycol; 2008 Feb; 44(1):38-44. PubMed ID: 27041038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama river (Spain): morphological, molecular, and ecological approaches(1).
    Loza V; Berrendero E; Perona E; Mateo P
    J Phycol; 2013 Apr; 49(2):282-97. PubMed ID: 27008516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of heterocytes in the physiology and ecology of bloom-forming harmful cyanobacteria.
    Yema L; Litchman E; de Tezanos Pinto P
    Harmful Algae; 2016 Dec; 60():131-138. PubMed ID: 28073556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network.
    Bouma-Gregson K; Olm MR; Probst AJ; Anantharaman K; Power ME; Banfield JF
    ISME J; 2019 Jun; 13(6):1618-1634. PubMed ID: 30809011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool.
    Loza V; Perona E; Mateo P
    Appl Environ Microbiol; 2013 Mar; 79(5):1459-72. PubMed ID: 23263954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen Stimulates
    Kim K; Mun H; Shin H; Park S; Yu C; Lee J; Yoon Y; Chung H; Yun H; Lee K; Jeong G; Oh JA; Lee I; Lee H; Kang T; Ryu HS; Park J; Shin Y; Rhew D
    Environ Sci Technol; 2020 Jun; 54(12):7185-7193. PubMed ID: 32496782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate.
    Carey CC; Ibelings BW; Hoffmann EP; Hamilton DP; Brookes JD
    Water Res; 2012 Apr; 46(5):1394-407. PubMed ID: 22217430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Streamlining, Plasticity, and Metabolic Versatility Distinguish Co-occurring Toxic and Nontoxic Cyanobacterial Strains of
    Tee HS; Wood SA; Bouma-Gregson K; Lear G; Handley KM
    mBio; 2021 Oct; 12(5):e0223521. PubMed ID: 34700377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of the Po River discharge on phytoplankton bloom dynamics along the coastline of Pesaro (Italy) in the Adriatic Sea.
    Penna N; Capellacci S; Ricci F
    Mar Pollut Bull; 2004 Feb; 48(3-4):321-6. PubMed ID: 14972584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring bioavailable phosphorus in lotic systems: a polyphasic approach based on cyanobacteria.
    Muñoz-Martín MÁ; Martínez-Rosell A; Perona E; Fernández-Piñas F; Mateo P
    Sci Total Environ; 2014 Mar; 475():158-68. PubMed ID: 23870499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the growth and movement of cyanobacteria in river systems.
    Guven B; Howard A
    Sci Total Environ; 2006 Sep; 368(2-3):898-908. PubMed ID: 16737730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing nitrogen limitation in the Bothnian Sea, potentially caused by inflow of phosphate-rich water from the Baltic Proper.
    Rolff C; Elfwing T
    Ambio; 2015 Nov; 44(7):601-11. PubMed ID: 25990584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.