These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 24200043)
21. Network-based identification of critical regulators as putative drivers of human cleft lip. Li A; Qin G; Suzuki A; Gajera M; Iwata J; Jia P; Zhao Z BMC Med Genomics; 2019 Jan; 12(Suppl 1):16. PubMed ID: 30704473 [TBL] [Abstract][Full Text] [Related]
22. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia. Lin XC; Liu XG; Zhang YM; Li N; Yang ZG; Fu WY; Lan LB; Zhang HT; Dai Y Int J Oncol; 2017 Feb; 50(2):671-683. PubMed ID: 28101583 [TBL] [Abstract][Full Text] [Related]
23. Screening the key microRNAs and transcription factors in prostate cancer based on microRNA functional synergistic relationships. Feng F; Wu J; Gao Z; Yu S; Cui Y Medicine (Baltimore); 2017 Jan; 96(1):e5679. PubMed ID: 28072703 [TBL] [Abstract][Full Text] [Related]
25. Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Zhang J; Duy Le T; Liu L; He J; Li J Mol Biosyst; 2016 Feb; 12(2):454-63. PubMed ID: 26660849 [TBL] [Abstract][Full Text] [Related]
26. MiRNA and TF co-regulatory network analysis for the pathology and recurrence of myocardial infarction. Lin Y; Sibanda VL; Zhang HM; Hu H; Liu H; Guo AY Sci Rep; 2015 Apr; 5():9653. PubMed ID: 25867756 [TBL] [Abstract][Full Text] [Related]
27. The oncogenic and prognostic potential of eight microRNAs identified by a synergetic regulatory network approach in lung cancer. Mitra R; Zhao Z Int J Comput Biol Drug Des; 2014; 7(4):384-93. PubMed ID: 25539849 [TBL] [Abstract][Full Text] [Related]
28. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer. Ye S; Yang L; Zhao X; Song W; Wang W; Zheng S Cell Biochem Biophys; 2014 Dec; 70(3):1849-58. PubMed ID: 25087086 [TBL] [Abstract][Full Text] [Related]
29. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling. Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768 [TBL] [Abstract][Full Text] [Related]
30. Gene regulation and prognostic indicators of lung squamous cell carcinoma: TCGA-derived miRNA/mRNA sequencing and DNA methylation data. Shen Y; Pan X; Yang J J Cell Physiol; 2019 Dec; 234(12):22896-22910. PubMed ID: 31169310 [TBL] [Abstract][Full Text] [Related]
31. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human. Liang C; Li Y; Luo J; Zhang Z Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622 [TBL] [Abstract][Full Text] [Related]
32. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Bandi N; Vassella E Mol Cancer; 2011 May; 10():55. PubMed ID: 21575235 [TBL] [Abstract][Full Text] [Related]
33. Inferring microRNA and transcription factor regulatory networks in heterogeneous data. Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388 [TBL] [Abstract][Full Text] [Related]
34. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. Liu M; Zhou K; Huang Y; Cao Y J Exp Clin Cancer Res; 2015 Oct; 34():121. PubMed ID: 26467212 [TBL] [Abstract][Full Text] [Related]
36. Transcription factor and microRNA-regulated network motifs for cancer and signal transduction networks. Hsieh WT; Tzeng KR; Ciou JS; Tsai JJ; Kurubanjerdjit N; Huang CH; Ng KL BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S5. PubMed ID: 25707690 [TBL] [Abstract][Full Text] [Related]
37. Interactive cooperation and hierarchical operation of microRNA and transcription factor crosstalk in human transcriptional regulatory network. Gov E; Arga KY IET Syst Biol; 2016 Dec; 10(6):219-228. PubMed ID: 27879476 [TBL] [Abstract][Full Text] [Related]
38. Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs. Croft L; Szklarczyk D; Jensen LJ; Gorodkin J BMC Syst Biol; 2012 Jul; 6():90. PubMed ID: 22824421 [TBL] [Abstract][Full Text] [Related]
39. microRNAs with AAGUGC seed motif constitute an integral part of an oncogenic signaling network. Zhou Y; Frings O; Branca RM; Boekel J; le Sage C; Fredlund E; Agami R; Orre LM Oncogene; 2017 Feb; 36(6):731-745. PubMed ID: 27477696 [TBL] [Abstract][Full Text] [Related]
40. microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Han W; Ren X; Yang Y; Li H; Zhao L; Lin Z Thorac Cancer; 2020 Jun; 11(6):1679-1688. PubMed ID: 32364673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]