These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 24200339)
1. Reproducible reference frame for in vitro testing of the human vertebrae. Danesi V; Zani L; Scheele A; Berra F; Cristofolini L J Biomech; 2014 Jan; 47(1):313-8. PubMed ID: 24200339 [TBL] [Abstract][Full Text] [Related]
2. Standardization of hemipelvis alignment for in vitro biomechanical testing. Morosato F; Traina F; Cristofolini L J Orthop Res; 2018 Jun; 36(6):1645-1652. PubMed ID: 29194747 [TBL] [Abstract][Full Text] [Related]
3. Comparison of three standard anatomical reference frames for the tibia-fibula complex. Conti G; Cristofolini L; Juszczyk M; Leardini A; Viceconti M J Biomech; 2008 Dec; 41(16):3384-9. PubMed ID: 18995859 [TBL] [Abstract][Full Text] [Related]
4. How do anterior/posterior translations of the thoracic cage affect the sagittal lumbar spine, pelvic tilt, and thoracic kyphosis? Harrison DE; Cailliet R; Harrison DD; Janik TJ Eur Spine J; 2002 Jun; 11(3):287-93. PubMed ID: 12107799 [TBL] [Abstract][Full Text] [Related]
5. Characterization of vertebral angle and torso depth by gender and age groups with a focus on occupant safety. Parenteau CS; Zhang P; Holcombe S; Wang S Traffic Inj Prev; 2014; 15(1):66-72. PubMed ID: 24279968 [TBL] [Abstract][Full Text] [Related]
6. Finite element modeling of the human thoracolumbar spine. Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762 [TBL] [Abstract][Full Text] [Related]
7. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. Liebsch C; Zimmermann J; Graf N; Schilling C; Wilke HJ; Kienle A J Mech Behav Biomed Mater; 2018 Jan; 77():578-585. PubMed ID: 29096123 [TBL] [Abstract][Full Text] [Related]
9. Automatic detection of vertebral number abnormalities in body CT images. Hanaoka S; Nakano Y; Nemoto M; Nomura Y; Takenaga T; Miki S; Yoshikawa T; Hayashi N; Masutani Y; Shimizu A Int J Comput Assist Radiol Surg; 2017 May; 12(5):719-732. PubMed ID: 28063076 [TBL] [Abstract][Full Text] [Related]
10. Test-retest repeatability of lumbar sagittal alignment and disc height measurements with or without axial loading: a computed tomography study. Hioki A; Miyamoto K; Shimizu K; Inoue N J Spinal Disord Tech; 2011 Apr; 24(2):93-8. PubMed ID: 21430497 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical comparison of the end plate design of three vertebral body replacement systems. Penzkofer R; Hofberger S; Spiegl U; Schilling C; Schultz R; Augat P; Gonschorek O Arch Orthop Trauma Surg; 2011 Sep; 131(9):1253-9. PubMed ID: 21359664 [TBL] [Abstract][Full Text] [Related]
12. Normative values for CT-based texture analysis of vertebral bodies in dual X-ray absorptiometry-confirmed, normally mineralized subjects. Mannil M; Eberhard M; Becker AS; Schönenberg D; Osterhoff G; Frey DP; Konukoglu E; Alkadhi H; Guggenberger R Skeletal Radiol; 2017 Nov; 46(11):1541-1551. PubMed ID: 28780746 [TBL] [Abstract][Full Text] [Related]
13. Correlations between breaking load and CT absorption values of vertebral bodies. Brassow F; Crone-Münzebrock W; Weh L; Kranz R; Eggers-Stroeder G Eur J Radiol; 1982 May; 2(2):99-101. PubMed ID: 7106141 [TBL] [Abstract][Full Text] [Related]
14. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313 [TBL] [Abstract][Full Text] [Related]
15. Supine thoracolumbar sagittal spine alignment: comparing computerized tomography and plain radiographs. Abdel MP; Bodemer WS; Anderson PA Spine (Phila Pa 1976); 2012 Feb; 37(4):340-5. PubMed ID: 22333928 [TBL] [Abstract][Full Text] [Related]
16. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure. Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060 [TBL] [Abstract][Full Text] [Related]
17. [The texture-analysis of high-resolution computed tomograms as an additional procedure in osteoporosis diagnosis: in-vitro studies on vertebral segments]. Waldt S; Meier N; Renger B; Lenzen H; Fiebich M; Rummeny EJ; Link TM Rofo; 1999 Aug; 171(2):136-42. PubMed ID: 10506888 [TBL] [Abstract][Full Text] [Related]
18. Restoring geometric and loading alignment of the thoracic spine with a vertebral compression fracture: effects of balloon (bone tamp) inflation and spinal extension. Gaitanis IN; Carandang G; Phillips FM; Magovern B; Ghanayem AJ; Voronov LI; Havey RM; Zindrick MR; Hadjipavlou AG; Patwardhan AG Spine J; 2005; 5(1):45-54. PubMed ID: 15653084 [TBL] [Abstract][Full Text] [Related]
19. Rod rotation and differential rod contouring followed by direct vertebral rotation for treatment of adolescent idiopathic scoliosis: effect on thoracic and thoracolumbar or lumbar curves assessed with intraoperative computed tomography. Seki S; Kawaguchi Y; Nakano M; Makino H; Mine H; Kimura T Spine J; 2016 Mar; 16(3):365-71. PubMed ID: 26656172 [TBL] [Abstract][Full Text] [Related]
20. In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Imai K; Ohnishi I; Yamamoto S; Nakamura K Spine (Phila Pa 1976); 2008 Jan; 33(1):27-32. PubMed ID: 18165745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]