These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 24200835)

  • 1. Technical considerations for large-scale parallel reaction monitoring analysis.
    Gallien S; Bourmaud A; Kim SY; Domon B
    J Proteomics; 2014 Apr; 100():147-59. PubMed ID: 24200835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Targeted Proteomics Using Internal Standard Triggered-Parallel Reaction Monitoring (IS-PRM).
    Gallien S; Kim SY; Domon B
    Mol Cell Proteomics; 2015 Jun; 14(6):1630-44. PubMed ID: 25755295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer.
    Gallien S; Duriez E; Crone C; Kellmann M; Moehring T; Domon B
    Mol Cell Proteomics; 2012 Dec; 11(12):1709-23. PubMed ID: 22962056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: Principle and applications.
    Bourmaud A; Gallien S; Domon B
    Proteomics; 2016 Aug; 16(15-16):2146-59. PubMed ID: 27145088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity of LC-MS/MS analysis: implication for proteomics experiments.
    Gallien S; Duriez E; Demeure K; Domon B
    J Proteomics; 2013 Apr; 81():148-58. PubMed ID: 23159602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry.
    Gallien S; Domon B
    Methods; 2015 Jun; 81():15-23. PubMed ID: 25843604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in high-resolution quantitative proteomics: implications for clinical applications.
    Gallien S; Domon B
    Expert Rev Proteomics; 2015; 12(5):489-98. PubMed ID: 26189960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Unit Resolution Versus High-Resolution Accurate Mass for Parallel Reaction Monitoring.
    Heil LR; Remes PM; MacCoss MJ
    J Proteome Res; 2021 Sep; 20(9):4435-4442. PubMed ID: 34319745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in high-resolution accurate mass spectrometry application to targeted proteomics.
    Lesur A; Domon B
    Proteomics; 2015 Mar; 15(5-6):880-90. PubMed ID: 25546610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in targeted proteomics for clinical applications.
    Domon B; Gallien S
    Proteomics Clin Appl; 2015 Apr; 9(3-4):423-31. PubMed ID: 25504492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics.
    Peterson AC; Russell JD; Bailey DJ; Westphall MS; Coon JJ
    Mol Cell Proteomics; 2012 Nov; 11(11):1475-88. PubMed ID: 22865924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed, Scheduled, High-Resolution Parallel Reaction Monitoring on a Full Scan QqTOF Instrument with Integrated Data-Dependent and Targeted Mass Spectrometric Workflows.
    Schilling B; MacLean B; Held JM; Sahu AK; Rardin MJ; Sorensen DJ; Peters T; Wolfe AJ; Hunter CL; MacCoss MJ; Gibson BW
    Anal Chem; 2015 Oct; 87(20):10222-9. PubMed ID: 26398777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly multiplexed targeted proteomics using precise control of peptide retention time.
    Gallien S; Peterman S; Kiyonami R; Souady J; Duriez E; Schoen A; Domon B
    Proteomics; 2012 Apr; 12(8):1122-33. PubMed ID: 22577013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel Reaction Monitoring: A Targeted Experiment Performed Using High Resolution and High Mass Accuracy Mass Spectrometry.
    Rauniyar N
    Int J Mol Sci; 2015 Dec; 16(12):28566-81. PubMed ID: 26633379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of proteins in urine samples using targeted mass spectrometry methods.
    Khristenko N; Domon B
    Methods Mol Biol; 2015; 1243():207-20. PubMed ID: 25384748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition.
    Vidova V; Spacil Z
    Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomics using the high resolution accurate mass capabilities of the quadrupole-orbitrap mass spectrometer.
    Gallien S; Domon B
    Bioanalysis; 2014 Aug; 6(16):2159-70. PubMed ID: 25331860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Parallel Reaction Monitoring with Electron Transfer Dissociation for Middle-Down Proteomics: An Application to Study the Quantitative Changes Induced by Histone Modifying Enzyme Inhibitors and Activators.
    Sweredoski MJ; Moradian A; Hess S
    Methods Mol Biol; 2017; 1647():61-69. PubMed ID: 28808995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Quantification of Phosphopeptides by Parallel Reaction Monitoring (PRM).
    Stolze SC; Nakagami H
    Methods Mol Biol; 2020; 2139():213-224. PubMed ID: 32462589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased selectivity, analytical precision, and throughput in targeted proteomics.
    Kiyonami R; Schoen A; Prakash A; Peterman S; Zabrouskov V; Picotti P; Aebersold R; Huhmer A; Domon B
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.002931. PubMed ID: 20664071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.