These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24201283)
1. Structural change in molten basalt at deep mantle conditions. Sanloup C; Drewitt JW; Konôpková Z; Dalladay-Simpson P; Morton DM; Rai N; van Westrenen W; Morgenroth W Nature; 2013 Nov; 503(7474):104-7. PubMed ID: 24201283 [TBL] [Abstract][Full Text] [Related]
2. SiO_{2} Glass Density to Lower-Mantle Pressures. Petitgirard S; Malfait WJ; Journaux B; Collings IE; Jennings ES; Blanchard I; Kantor I; Kurnosov A; Cotte M; Dane T; Burghammer M; Rubie DC Phys Rev Lett; 2017 Nov; 119(21):215701. PubMed ID: 29219420 [TBL] [Abstract][Full Text] [Related]
3. Spin crossover and iron-rich silicate melt in the Earth's deep mantle. Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105 [TBL] [Abstract][Full Text] [Related]
4. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts. Bykova E; Bykov M; Černok A; Tidholm J; Simak SI; Hellman O; Belov MP; Abrikosov IA; Liermann HP; Hanfland M; Prakapenka VB; Prescher C; Dubrovinskaia N; Dubrovinsky L Nat Commun; 2018 Nov; 9(1):4789. PubMed ID: 30442940 [TBL] [Abstract][Full Text] [Related]
5. X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth's mantle. Lee SK; Lin JF; Cai YQ; Hiraoka N; Eng PJ; Okuchi T; Mao HK; Meng Y; Hu MY; Chow P; Shu J; Li B; Fukui H; Lee BH; Kim HN; Yoo CS Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7925-9. PubMed ID: 18535140 [TBL] [Abstract][Full Text] [Related]
6. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Morard G; Hernandez JA; Guarguaglini M; Bolis R; Benuzzi-Mounaix A; Vinci T; Fiquet G; Baron MA; Shim SH; Ko B; Gleason AE; Mao WL; Alonso-Mori R; Lee HJ; Nagler B; Galtier E; Sokaras D; Glenzer SH; Andrault D; Garbarino G; Mezouar M; Schuster AK; Ravasio A Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11981-11986. PubMed ID: 32414927 [TBL] [Abstract][Full Text] [Related]
7. Pressure-Induced Coordination Changes in a Pyrolitic Silicate Melt From Ab Initio Molecular Dynamics Simulations. Solomatova NV; Caracas R J Geophys Res Solid Earth; 2019 Nov; 124(11):11232-11250. PubMed ID: 32025456 [TBL] [Abstract][Full Text] [Related]
8. Pressure-induced structural change in MgSiO Kono Y; Shibazaki Y; Kenney-Benson C; Wang Y; Shen G Proc Natl Acad Sci U S A; 2018 Feb; 115(8):1742-1747. PubMed ID: 29432162 [TBL] [Abstract][Full Text] [Related]
9. Fate of MgSiO3 melts at core-mantle boundary conditions. Petitgirard S; Malfait WJ; Sinmyo R; Kupenko I; Hennet L; Harries D; Dane T; Burghammer M; Rubie DC Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14186-90. PubMed ID: 26578761 [TBL] [Abstract][Full Text] [Related]
11. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt. Joachim B; Stechern A; Ludwig T; Konzett J; Pawley A; Ruzié-Hamilton L; Clay PL; Burgess R; Ballentine CJ Contrib Mineral Petrol; 2017; 172(4):15. PubMed ID: 28360435 [TBL] [Abstract][Full Text] [Related]
12. Solid-liquid iron partitioning in Earth's deep mantle. Andrault D; Petitgirard S; Lo Nigro G; Devidal JL; Veronesi G; Garbarino G; Mezouar M Nature; 2012 Jul; 487(7407):354-7. PubMed ID: 22810700 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum. Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633 [TBL] [Abstract][Full Text] [Related]
14. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Bajgain S; Ghosh DB; Karki BB Nat Commun; 2015 Oct; 6():8578. PubMed ID: 26450568 [TBL] [Abstract][Full Text] [Related]
15. Pressure-induced coordination changes in alkali-germanate melts: an in situ spectroscopic investigation. Farber DL; Williams Q Science; 1992 Jun; 256(5062):1427-30. PubMed ID: 17791610 [TBL] [Abstract][Full Text] [Related]
16. Configurational entropy of basaltic melts in Earth's mantle. Lee SK; Mosenfelder JL; Park SY; Lee AC; Asimow PD Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21938-21944. PubMed ID: 32839310 [TBL] [Abstract][Full Text] [Related]
17. Aluminium control of argon solubility in silicate melts under pressure. Bouhifd MA; Jephcoat AP Nature; 2006 Feb; 439(7079):961-4. PubMed ID: 16495996 [TBL] [Abstract][Full Text] [Related]
18. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle. Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431 [TBL] [Abstract][Full Text] [Related]
19. An early geodynamo driven by exsolution of mantle components from Earth's core. Badro J; Siebert J; Nimmo F Nature; 2016 Aug; 536(7616):326-8. PubMed ID: 27437583 [TBL] [Abstract][Full Text] [Related]
20. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle. Matsukage KN; Jing Z; Karato S Nature; 2005 Nov; 438(7067):488-91. PubMed ID: 16306990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]