BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24201322)

  • 1. Multiphase flow of immiscible fluids on unstructured moving meshes.
    Misztal MK; Erleben K; Bargteil A; Fursund J; Christensen BB; Bærentzen JA; Bridson R
    IEEE Trans Vis Comput Graph; 2014 Jan; 20(1):4-16. PubMed ID: 24201322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
    Srivastava S; Yazdchi K; Luding S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
    Longest PW; Vinchurkar S
    Med Eng Phys; 2007 Apr; 29(3):350-66. PubMed ID: 16814588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O; Eskandari H; Salcudean SE
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmotic flow in a water column surrounded by an immiscible liquid.
    Movahed S; Khani S; Wen JZ; Li D
    J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vortical inviscid flows with two-way solid-fluid coupling.
    Vines M; Houston B; Lang J; Lee WS
    IEEE Trans Vis Comput Graph; 2014 Feb; 20(2):303-15. PubMed ID: 24356371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components.
    Hassan O; Morgan K; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2531-52. PubMed ID: 17519197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-order unstructured-mesh approach for computational electromagnetics in the time domain.
    El Hachemi M; Hassan O; Morgan K; Rowse D; Weatherill N
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):445-69. PubMed ID: 15306503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model.
    Weichert F; Schröder A; Landes C; Shamaa A; Awad SK; Walczak L; Müller H; Wagner M
    Med Biol Eng Comput; 2010 Jun; 48(6):597-610. PubMed ID: 20411435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.
    Li Y; LeBoeuf EJ; Basu PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046711. PubMed ID: 16383571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-electron density functional theory and time-dependent density functional theory with high-order finite elements.
    Lehtovaara L; Havu V; Puska M
    J Chem Phys; 2009 Aug; 131(5):054103. PubMed ID: 19673547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving Particles Through a Finite Element Mesh.
    Peskin AP; Hardin GR
    J Res Natl Inst Stand Technol; 1998; 103(1):77-91. PubMed ID: 28009377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Lagrangian lattice Boltzmann model for compressible flows on unstructured meshes.
    Saadat MH; Bösch F; Karlin IV
    Phys Rev E; 2020 Feb; 101(2-1):023311. PubMed ID: 32168653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of gradient estimation methods for volume rendering on unstructured meshes.
    Correa CD; Hero R; Ma KL
    IEEE Trans Vis Comput Graph; 2011 Mar; 17(3):305-19. PubMed ID: 21233515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.
    Zhang Y; Hughes TJ; Bajaj CL
    Comput Methods Appl Mech Eng; 2010 Jan; 199(5-8):405-415. PubMed ID: 20161555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic mesh generation for the simulation of nanoscale metal-oxide-semiconductor field-effect transistors.
    Aldegunde M; Seoane N; García-Loureiro AJ; Sushko PV; Shluger AL; Gavartin JL; Kalna K; Asenov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056702. PubMed ID: 18643190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.