BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 2420162)

  • 21. Antiplatelet effects of KW-7, a new inhibitor of cyclic nucleotide phosphodiesterases.
    Wu CC; Wang WY; Kuo RY; Chang FR; Wu YC
    Eur J Pharmacol; 2004 Jan; 483(2-3):187-94. PubMed ID: 14729106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the relationship between pharmacological inhibition of cyclic nucleotide phosphodiesterase and relaxation of canine tracheal smooth muscle.
    Polson JB; Krzanowski JJ; Anderson WH; Fitzpatrick DF; Hwang DP; Szentivanyi A
    Biochem Pharmacol; 1979 Apr; 28(8):1391-5. PubMed ID: 87201
    [No Abstract]   [Full Text] [Related]  

  • 23. Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase.
    Grant PG; Colman RW
    Biochemistry; 1984 Apr; 23(8):1801-7. PubMed ID: 6326810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of human lymphocyte cyclic nucleotide phosphodiesterases by the chlorinated adenosine analog DTA-35.
    Hurwitz MY; Hurwitz RL; Edstrom RD
    J Enzyme Inhib; 1987; 1(4):267-74. PubMed ID: 2854846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of various phosphodiesterase inhibitors, pyrimidine and purine compounds, and inorganic phosphates on cyclic CMP, cyclic AMP and cyclic GMP phosphodiesterases.
    Helfman DM; Kuo JF
    Biochem Pharmacol; 1982 Jan; 31(1):43-7. PubMed ID: 6277336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolysis of cyclic AMP phosphodiesterase-II attenuates its ability to be inhibited by compounds which exert positive inotropic actions in cardiac tissue.
    Price B; Pyne NJ; Houslay MD
    Biochem Pharmacol; 1987 Dec; 36(23):4047-54. PubMed ID: 2825712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective inhibition of rat lung cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase by cyclic nucleotides and their analogues and various drugs [proceedings].
    Butt NM; Saeed SA; Collier HO
    Biochem Soc Trans; 1980 Jun; 8(3):380-1. PubMed ID: 6249674
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of isozyme-selective inhibitors of phosphodiesterase on histamine-stimulated cyclic AMP accumulation in guinea-pig hippocampus.
    Stanley C; Brown AM; Hill SJ
    J Neurochem; 1989 Mar; 52(3):671-6. PubMed ID: 2465375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphodiesterase inhibitors as tools in cyclic nucleotide research: a precautionary comment.
    Wells JN; Kramer GL
    Mol Cell Endocrinol; 1981 Jul; 23(1):1-9. PubMed ID: 6167475
    [No Abstract]   [Full Text] [Related]  

  • 30. Inhibition cyclic nucleotide phosphodiesterase by FPL 55712, an SRS-A antagonist.
    Chasin M; Scott C
    Biochem Pharmacol; 1978; 27(16):2065-7. PubMed ID: 214090
    [No Abstract]   [Full Text] [Related]  

  • 31. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine.
    Souness JE; Brazdil R; Diocee BK; Jordan R
    Br J Pharmacol; 1989 Nov; 98(3):725-34. PubMed ID: 2480168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells.
    Lugnier C; Schini VB
    Biochem Pharmacol; 1990 Jan; 39(1):75-84. PubMed ID: 2153383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurements of cyclic AMP and cyclic GMP phosphodiesterase activity in isolated tubular segments.
    Jackson BA; Edwards RM; Dousa TP
    Kidney Int; 1980 Oct; 18(4):512-8. PubMed ID: 6164816
    [No Abstract]   [Full Text] [Related]  

  • 34. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity.
    Weishaar RE; Cain MH; Bristol JA
    J Med Chem; 1985 May; 28(5):537-45. PubMed ID: 2985781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximizing the renal cyclic 3'-5'-guanosine monophosphate system with type V phosphodiesterase inhibition and exogenous natriuretic peptide: a novel strategy to improve renal function in experimental overt heart failure.
    Chen HH; Huntley BK; Schirger JA; Cataliotti A; Burnett JC
    J Am Soc Nephrol; 2006 Oct; 17(10):2742-7. PubMed ID: 16928803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mepacrine-induced inhibition of human platelet cyclic-GMP phosphodiesterase.
    Yamakado T; Tanaka F; Hidaka H
    Biochim Biophys Acta; 1984 Sep; 801(1):111-6. PubMed ID: 6147162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic GMP binding and phosphodiesterase: implication for platelet function.
    Hamet P; Coquil JF; Bousseau-Lafortune S; Franks DJ; Tremblay J
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():119-36. PubMed ID: 6202123
    [No Abstract]   [Full Text] [Related]  

  • 38. Antiinflammatory properties of a hydroperoxide compound, structurally related to acetylsalicylic acid.
    Killackey JJ; Killackey BA; Cerskus I; Philp RB
    Inflammation; 1984 Jun; 8(2):157-69. PubMed ID: 6430802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological inhibition of calmodulin-sensitive phosphodiesterases.
    Ilien B; Ruckstuhl M; Landry Y
    J Pharmacol; 1982; 13(2):307-16. PubMed ID: 6285085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity of cyclic nucleotide phosphodiesterases in granulocytes of chronic myelogenous leukemia (CML). A preliminary report.
    Naskalski JW; UciƄski WS
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1985; 112(1):134-40. PubMed ID: 2581858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.