These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 24201705)
21. Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. Graham AM; McCracken KG Heredity (Edinb); 2019 Jun; 122(6):819-832. PubMed ID: 30631144 [TBL] [Abstract][Full Text] [Related]
22. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. Hanaoka M; Droma Y; Basnyat B; Ito M; Kobayashi N; Katsuyama Y; Kubo K; Ota M PLoS One; 2012; 7(12):e50566. PubMed ID: 23227185 [TBL] [Abstract][Full Text] [Related]
23. Admixture facilitates genetic adaptations to high altitude in Tibet. Jeong C; Alkorta-Aranburu G; Basnyat B; Neupane M; Witonsky DB; Pritchard JK; Beall CM; Di Rienzo A Nat Commun; 2014; 5():3281. PubMed ID: 24513612 [TBL] [Abstract][Full Text] [Related]
24. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Peng Y; Yang Z; Zhang H; Cui C; Qi X; Luo X; Tao X; Wu T; Ouzhuluobu ; Basang ; Ciwangsangbu ; Danzengduojie ; Chen H; Shi H; Su B Mol Biol Evol; 2011 Feb; 28(2):1075-81. PubMed ID: 21030426 [TBL] [Abstract][Full Text] [Related]
26. A genetic adaptive pattern-low hemoglobin concentration in the Himalayan highlanders. Wu TY; Liu FY; Ouzhou-Loubu ; Cui CY; Qi XB; Su B Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):481-93. PubMed ID: 24654529 [TBL] [Abstract][Full Text] [Related]
27. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau. Wang GD; Fan RX; Zhai W; Liu F; Wang L; Zhong L; Wu H; Yang HC; Wu SF; Zhu CL; Li Y; Gao Y; Ge RL; Wu CI; Zhang YP Genome Biol Evol; 2014 Aug; 6(8):2122-8. PubMed ID: 25091388 [TBL] [Abstract][Full Text] [Related]
28. Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer. Lanikova L; Reading NS; Hu H; Tashi T; Burjanivova T; Shestakova A; Siwakoti B; Thakur BK; Pun CB; Sapkota A; Abdelaziz S; Feng BJ; Huff CD; Hashibe M; Prchal JT Oncotarget; 2017 Feb; 8(7):11739-11747. PubMed ID: 28036300 [TBL] [Abstract][Full Text] [Related]
29. Andean and Tibetan patterns of adaptation to high altitude. Bigham AW; Wilson MJ; Julian CG; Kiyamu M; Vargas E; Leon-Velarde F; Rivera-Chira M; Rodriquez C; Browne VA; Parra E; Brutsaert TD; Moore LG; Shriver MD Am J Hum Biol; 2013; 25(2):190-7. PubMed ID: 23348729 [TBL] [Abstract][Full Text] [Related]
31. A genome-wide search for signals of high-altitude adaptation in Tibetans. Xu S; Li S; Yang Y; Tan J; Lou H; Jin W; Yang L; Pan X; Wang J; Shen Y; Wu B; Wang H; Jin L Mol Biol Evol; 2011 Feb; 28(2):1003-11. PubMed ID: 20961960 [TBL] [Abstract][Full Text] [Related]
32. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Heinrich EC; Wu L; Lawrence ES; Cole AM; Anza-Ramirez C; Villafuerte FC; Simonson TS Ann Hum Genet; 2019 May; 83(3):171-176. PubMed ID: 30719713 [TBL] [Abstract][Full Text] [Related]
33. EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. Buroker NE; Ning XH; Zhou ZN; Li K; Cen WJ; Wu XF; Zhu WZ; Scott CR; Chen SH Blood Cells Mol Dis; 2012 Aug; 49(2):67-73. PubMed ID: 22595196 [TBL] [Abstract][Full Text] [Related]
34. Defective Tibetan PHD2 binding to p23 links high altitude adaption to altered oxygen sensing. Song D; Li LS; Arsenault PR; Tan Q; Bigham AW; Heaton-Johnson KJ; Master SR; Lee FS J Biol Chem; 2014 May; 289(21):14656-65. PubMed ID: 24711448 [TBL] [Abstract][Full Text] [Related]
35. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Beall CM; Cavalleri GL; Deng L; Elston RC; Gao Y; Knight J; Li C; Li JC; Liang Y; McCormack M; Montgomery HE; Pan H; Robbins PA; Shianna KV; Tam SC; Tsering N; Veeramah KR; Wang W; Wangdui P; Weale ME; Xu Y; Xu Z; Yang L; Zaman MJ; Zeng C; Zhang L; Zhang X; Zhaxi P; Zheng YT Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11459-64. PubMed ID: 20534544 [TBL] [Abstract][Full Text] [Related]
37. A genetic mechanism for Tibetan high-altitude adaptation. Lorenzo FR; Huff C; Myllymäki M; Olenchock B; Swierczek S; Tashi T; Gordeuk V; Wuren T; Ri-Li G; McClain DA; Khan TM; Koul PA; Guchhait P; Salama ME; Xing J; Semenza GL; Liberzon E; Wilson A; Simonson TS; Jorde LB; Kaelin WG; Koivunen P; Prchal JT Nat Genet; 2014 Sep; 46(9):951-6. PubMed ID: 25129147 [TBL] [Abstract][Full Text] [Related]
38. Less is more: blunted responses to hypoxia revealed in sea-level Tibetans. Simonson TS; Powell FL J Appl Physiol (1985); 2014 Apr; 116(7):711-2. PubMed ID: 24114703 [No Abstract] [Full Text] [Related]
39. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations. Ji LD; Qiu YQ; Xu J; Irwin DM; Tam SC; Tang NL; Zhang YP Mol Biol Evol; 2012 Nov; 29(11):3359-70. PubMed ID: 22628534 [TBL] [Abstract][Full Text] [Related]
40. Association of Brutsaert TD; Kiyamu M; Elias Revollendo G; Isherwood JL; Lee FS; Rivera-Ch M; Leon-Velarde F; Ghosh S; Bigham AW Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24006-24011. PubMed ID: 31712437 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]