These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24201844)

  • 1. Distribution of photoassimilates in the pea plant: chronology of events in non-fertilized ovaries and effects of gibberellic acid.
    Jahnke S; Bier D; Estruch JJ; Beltrán JP
    Planta; 1989 Dec; 180(1):53-60. PubMed ID: 24201844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fruit-set of unpollinated ovaries of Pisum sativum L. : Influence of vegetative parts.
    Carbonell J; García-Martínez JL
    Planta; 1980 Feb; 147(5):444-50. PubMed ID: 24311167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The source of gibberellins in the parthenocarpic development of ovaries on topped pea plants.
    Peretó JG; Beltrán JP; García-Martínez JL
    Planta; 1988 Oct; 175(4):493-9. PubMed ID: 24221931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribulose-1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L.
    Carbonell J; García-Martínez JL
    Planta; 1985 Jul; 164(4):534-9. PubMed ID: 24248229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of spermine levels with ovary senescence and with fruit set and development inPisum sativum L.
    Carbonell J; Navarro JL
    Planta; 1989 Dec; 178(4):482-7. PubMed ID: 24213045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine Decarboxylase and Putrescine Oxidase in Ovaries of Pisum sativum L. (Changes during Ovary Senescence and Early Stages of Fruit Development).
    Perez-Amador MA; Carbonell J
    Plant Physiol; 1995 Mar; 107(3):865-872. PubMed ID: 12228409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormonal Control of Parthenocarpic Ovary Growth by the Apical Shoot in Pea.
    Rodrigo MJ; García-Martínez JL
    Plant Physiol; 1998 Feb; 116(2):511-8. PubMed ID: 9490755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Transfer and Partitioning between Vegetative and Reproductive Organs in Pisum sativum L.
    Jeuffroy MH; Warembourg FR
    Plant Physiol; 1991 Sep; 97(1):440-8. PubMed ID: 16668406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.) : Some implications for polarity and apical dominance.
    Morris DA
    Planta; 1977 Jan; 136(1):91-6. PubMed ID: 24420232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sink to Source Transition in Tendrils of a Semileafless Mutant, Pisum sativum cv Curly.
    Côté R; Gerrath JM; Peterson CA; Grodzinski B
    Plant Physiol; 1992 Dec; 100(4):1640-8. PubMed ID: 16653179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of soybean ovary growth from anthesis to abscission of aborting ovaries.
    Dybing CD; Ghiasi H; Paech C
    Plant Physiol; 1986 Aug; 81(4):1069-74. PubMed ID: 16664945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification, quantitation and distribution of gibberellins in fruits of Pisum sativum L. cv. Alaska during pod development.
    García-Martinez JL; Santes C; Croker SJ; Hedden P
    Planta; 1991 Apr; 184(1):53-60. PubMed ID: 24193929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply.
    Kaschuk G; Hungria M; Leffelaar PA; Giller KE; Kuyper TW
    Plant Biol (Stuttg); 2010 Jan; 12(1):60-9. PubMed ID: 20653888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviation of Copper-Induced Stress in Pea (
    Javed T; Ali MM; Shabbir R; Anwar R; Afzal I; Mauro RP
    Biology (Basel); 2021 Feb; 10(2):. PubMed ID: 33562436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of [C]Sucrose Export from Source Leaves of Vicia faba by Gibberellic Acid.
    Aloni B; Daie J; Wyse RE
    Plant Physiol; 1986 Dec; 82(4):962-6. PubMed ID: 16665174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the Level of Peptidase Activities in Pea Ovaries during Senescence and Fruit Set Induced by Gibberellic Acid.
    Carrasco P; Carbonell J
    Plant Physiol; 1990 Apr; 92(4):1070-4. PubMed ID: 16667372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of the le Mutation in Young Ovaries of Pisum sativum and Its Effect on Fruit Development.
    Santes CM; Hedden P; Sponsel VM; Reid JB; Garcia-Martinez JL
    Plant Physiol; 1993 Mar; 101(3):759-764. PubMed ID: 12231727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of assimilate utilization on photosynthetic rate in wheat.
    King RW; Wardlaw IF; Evans LT
    Planta; 1967 Sep; 77(3):261-76. PubMed ID: 24522544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gibberellic Acid-Promoted Lignification and Phenylalanine Ammonia-lyase Activity in a Dwarf Pea (Pisum sativum).
    Cheng CK; Marsh HV
    Plant Physiol; 1968 Nov; 43(11):1755-9. PubMed ID: 16656968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoperiodic and genetic control of carbon partitioning in peas and its relationship to apical senescence.
    Kelly MO; Davies PJ
    Plant Physiol; 1988 Mar; 86(3):978-82. PubMed ID: 16666020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.