These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24201941)

  • 1. Subcellular localization of the sites of conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene in plant cells.
    Bouzayen M; Latché A; Pech JC
    Planta; 1990 Jan; 180(2):175-80. PubMed ID: 24201941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L.
    Guy M; Kende H
    Planta; 1984 Mar; 160(3):281-7. PubMed ID: 24258513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene formation in Pisum sativum and Vicia faba protoplasts.
    Guy M; Kende H
    Planta; 1984 Mar; 160(3):276-80. PubMed ID: 24258512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apical localization of 1-aminocyclopropane-1-carboxylic acid and its conversion to ethylene in etiolated pea seedlings.
    Taylor JE; Grosskopf DG; McGaw BA; Horgan R; Scott IM
    Planta; 1988 Apr; 174(1):112-4. PubMed ID: 24221426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the conversion of 1-amino-2-ethylcyclopropane-1-carboxylic acid stereoisomers to 1-butene by pea epicotyls and by a cell-free system.
    McKeon TA; Shang Fa Yang
    Planta; 1984 Jan; 160(1):84-7. PubMed ID: 24258376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L.
    Jones JF; Kende H
    Planta; 1979 Oct; 146(5):649-56. PubMed ID: 24318341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide.
    Kao CH; Yang SF
    Planta; 1982 Aug; 155(3):261-6. PubMed ID: 24271776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves.
    McKeon TA; Hoffman NE; Yang SF
    Planta; 1982 Sep; 155(5):437-43. PubMed ID: 24271976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-Aminocyclopropane-1-carboxylic-acid-dependent ethylene production during re-formation of vacuoles in evacuolated protoplasts of Petunia hybrida.
    Erdmann H; Griesbach RJ; Lawson RH; Mattoo AK
    Planta; 1989 Sep; 179(2):196-202. PubMed ID: 24201518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bicarbonate/CO(2)-Facilitated Conversion of 1-Amino-cyclopropane-1-carboxylic Acid to Ethylene in Model Systems and Intact Tissues.
    McRae DG; Coker JA; Legge RL; Thompson JE
    Plant Physiol; 1983 Nov; 73(3):784-90. PubMed ID: 16663301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The modulation of the conversion of l-aminocyclopropane-l-carboxylic acid to ethylene by light.
    de Laat AM; Brandenburg DC; van Loon LC
    Planta; 1981 Nov; 153(3):193-200. PubMed ID: 24276821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid in homogenates of etiolated pea seedlings.
    Konze JR; Kende H
    Planta; 1979 Jan; 146(3):293-301. PubMed ID: 24318182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of in vivo ethylene production rate on 1-aminocyclopropane-1-carboxylic Acid content and oxygen concentrations.
    Yip WK; Jiao XZ; Yang SF
    Plant Physiol; 1988 Nov; 88(3):553-8. PubMed ID: 16666347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galactose inhibits the conversion of 1-aminocyclopropane-1-carboxylic Acid to ethylene in aged tobacco leaf discs.
    Philosoph-Hadas S; Aharoni N
    Plant Physiol; 1987 Jan; 83(1):8-11. PubMed ID: 16665220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethylene production and embyogenesis from anther cultures of barley (Hordeum vulgare).
    Cho UH; Kasha KJ
    Plant Cell Rep; 1989 Oct; 8(7):415-7. PubMed ID: 24233366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in 1-(malonylamino)cyclopropane-1-carboxylic acid content in wilted wheat leaves in relation to their ethylene production rates and 1-aminocyclopropane-1-carboxylic acid content.
    Hoffman NE; Liu Y; Yang SF
    Planta; 1983 May; 157(6):518-23. PubMed ID: 24264416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and Release of Ethylene from 1-aminocyclopropane-1-carboxylic Acid in Lemna minor L. in the Dark and at Different Carbon Dioxide Compensation Concentrations.
    Fuhrer J
    J Plant Physiol; 1985 Jan; 117(4):307-17. PubMed ID: 23195798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potamogeton pectinatus Is Constitutively Incapable of Synthesizing Ethylene and Lacks 1-Aminocyclopropane-1-Carboxylic Acid Oxidase.
    Summers JE; Voesenek L; Blom C; Lewis MJ; Jackson MB
    Plant Physiol; 1996 Jul; 111(3):901-908. PubMed ID: 12226336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Ethylene Biosynthesis in Virus-Infected Tobacco Leaves : II. TIME COURSE OF LEVELS OF INTERMEDIATES AND IN VIVO CONVERSION RATES.
    de Laat AM; van Loon LC
    Plant Physiol; 1982 Jan; 69(1):240-5. PubMed ID: 16662167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene.
    Adams DO; Yang SF
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):170-4. PubMed ID: 16592605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.