These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 24201971)

  • 1. Quantitative determination of fragmentation kinetics and thermodynamics of colloidal silver nanowires by in situ high-energy synchrotron X-ray diffraction.
    Li Z; Okasinski JS; Almer JD; Ren Y; Zuo X; Sun Y
    Nanoscale; 2014 Jan; 6(1):365-70. PubMed ID: 24201971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron X-ray diffraction techniques.
    Yamauchi M; Okubo K; Tsukuda T; Kato K; Takata M; Takeda S
    Nanoscale; 2014 Apr; 6(8):4067-71. PubMed ID: 24608274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature phase and morphology transformations in noble metal nanocatalysts.
    Malis O; Byard C; Mott D; Wanjala BN; Loukrakpam R; Luo J; Zhong CJ
    Nanotechnology; 2011 Jan; 22(2):025701. PubMed ID: 21135475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Synchrotron X-ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles.
    Wu S; Li M; Sun Y
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):8987-8995. PubMed ID: 30830994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation.
    Joshi UA; Yoon S; Baik S; Lee JS
    J Phys Chem B; 2006 Jun; 110(25):12249-56. PubMed ID: 16800545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.
    Liu Q; Gao MR; Liu Y; Okasinski JS; Ren Y; Sun Y
    Nano Lett; 2016 Jan; 16(1):715-20. PubMed ID: 26625184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism.
    Kuo CL; Hwang KC
    Langmuir; 2012 Feb; 28(8):3722-9. PubMed ID: 22304018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts.
    Njagi EC; Huang H; Stafford L; Genuino H; Galindo HM; Collins JB; Hoag GE; Suib SL
    Langmuir; 2011 Jan; 27(1):264-71. PubMed ID: 21133391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite.
    Rodriguez-Blanco JD; Shaw S; Benning LG
    Nanoscale; 2011 Jan; 3(1):265-71. PubMed ID: 21069231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron X-ray diffraction.
    Sun Y; Ren Y; Haeffner DR; Almer JD; Wang L; Yang W; Truong TT
    Nano Lett; 2010 Sep; 10(9):3747-53. PubMed ID: 20681550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature.
    Liu JH; Tsai CY; Chiu YH; Hsieh FM
    Nanotechnology; 2009 Jan; 20(3):035301. PubMed ID: 19417290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-affine structural evolution of soft colloidal crystalline latex films under stretching as observed via synchrotron X-ray scattering.
    Men Y; Rieger J; Roth SV; Gehrke R; Kong X
    Langmuir; 2006 Sep; 22(20):8285-8. PubMed ID: 16981738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-jump X-ray studies of liquid crystal transitions in lipids.
    Seddon JM; Squires AM; Conn CE; Ces O; Heron AJ; Mulet X; Shearman GC; Templer RH
    Philos Trans A Math Phys Eng Sci; 2006 Oct; 364(1847):2635-55. PubMed ID: 16973480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique.
    Jeworrek C; Pühse M; Winter R
    Langmuir; 2008 Oct; 24(20):11851-9. PubMed ID: 18767826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructures, surface properties, and topotactic transitions of manganite nanorods.
    Gao T; Krumeich F; Nesper R; Fjellvåg H; Norby P
    Inorg Chem; 2009 Jul; 48(13):6242-50. PubMed ID: 19462984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing solution-phase reaction dynamics with time-resolved X-ray liquidography.
    Ihee H
    Acc Chem Res; 2009 Feb; 42(2):356-66. PubMed ID: 19117426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological determination of face-centered-cubic metallic nanoparticles by X-ray diffraction.
    Lee CF; Chang CL; Yang JC; Lai HY; Chen CH
    J Colloid Interface Sci; 2012 Mar; 369(1):129-33. PubMed ID: 22239984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diameter-controlled synthesis of α-Mn2O3 nanorods and nanowires with enhanced surface morphology and optical properties.
    Javed Q; Wang FP; Rafique MY; Toufiq AM; Li QS; Mahmood H; Khan W
    Nanotechnology; 2012 Oct; 23(41):415603. PubMed ID: 23011093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the metal-directed growth of single-crystal M-TCNQF4 organic nanowires with time-resolved, in situ X-ray diffraction and first-principles theoretical studies.
    Xiao K; Yoon M; Rondinone AJ; Payzant EA; Geohegan DB
    J Am Chem Soc; 2012 Sep; 134(35):14353-61. PubMed ID: 22506925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate.
    Ganesh Babu MM; Gunasekaran P
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):191-5. PubMed ID: 19660920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.