These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 24202400)

  • 1. Sodium-ion batteries using ion exchange membranes as electrolytes and separators.
    Cao C; Liu W; Tan L; Liao X; Li L
    Chem Commun (Camb); 2013 Dec; 49(100):11740-2. PubMed ID: 24202400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries.
    Liu Y; Tan L; Li L
    Chem Commun (Camb); 2012 Oct; 48(79):9858-60. PubMed ID: 22903057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents.
    Nagarjuna G; Hui J; Cheng KJ; Lichtenstein T; Shen M; Moore JS; Rodríguez-López J
    J Am Chem Soc; 2014 Nov; 136(46):16309-16. PubMed ID: 25325703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.
    Chen J; Huang Z; Wang C; Porter S; Wang B; Lie W; Liu HK
    Chem Commun (Camb); 2015 Jun; 51(48):9809-12. PubMed ID: 25987231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonaqueous Sodium-Ion Full Cells: Status, Strategies, and Prospects.
    Niu YB; Yin YX; Guo YG
    Small; 2019 Aug; 15(32):e1900233. PubMed ID: 30908817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery.
    Wei X; Xu W; Huang J; Zhang L; Walter E; Lawrence C; Vijayakumar M; Henderson WA; Liu T; Cosimbescu L; Li B; Sprenkle V; Wang W
    Angew Chem Int Ed Engl; 2015 Jul; 54(30):8684-7. PubMed ID: 25891480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion-specific influence of electrolytes on bubble coalescence in nonaqueous solvents.
    Henry CL; Craig VS
    Langmuir; 2008 Aug; 24(15):7979-85. PubMed ID: 18598065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution-grown germanium nanowire anodes for lithium-ion batteries.
    Chockla AM; Klavetter KC; Mullins CB; Korgel BA
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance.
    Fang J; Kelarakis A; Lin YW; Kang CY; Yang MH; Cheng CL; Wang Y; Giannelis EP; Tsai LD
    Phys Chem Chem Phys; 2011 Aug; 13(32):14457-61. PubMed ID: 21731963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion specific electrolyte effects on thin film drainage in nonaqueous solvents propylene carbonate and formamide.
    Henry CL; Karakashev SI; Nguyen PT; Nguyen AV; Craig VS
    Langmuir; 2009 Sep; 25(17):9931-7. PubMed ID: 19507877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics.
    Ganesh P; Jiang DE; Kent PR
    J Phys Chem B; 2011 Mar; 115(12):3085-90. PubMed ID: 21384941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.
    Wang HG; Wu Z; Meng FL; Ma DL; Huang XL; Wang LM; Zhang XB
    ChemSusChem; 2013 Jan; 6(1):56-60. PubMed ID: 23225752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity.
    Shekibi Y; Rüther T; Huang J; Hollenkamp AF
    Phys Chem Chem Phys; 2012 Apr; 14(13):4597-604. PubMed ID: 22354216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetism in lithium-oxygen discharge product.
    Lu J; Jung HJ; Lau KC; Zhang Z; Schlueter JA; Du P; Assary RS; Greeley J; Ferguson GA; Wang HH; Hassoun J; Iddir H; Zhou J; Zuin L; Hu Y; Sun YK; Scrosati B; Curtiss LA; Amine K
    ChemSusChem; 2013 Jul; 6(7):1196-202. PubMed ID: 23670967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modern battery electrolytes: ion-ion interactions in Li+/Na+ conductors from DFT calculations.
    Jónsson E; Johansson P
    Phys Chem Chem Phys; 2012 Aug; 14(30):10774-9. PubMed ID: 22751486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries.
    Bansal D; Cassel F; Croce F; Hendrickson M; Plichta E; Salomon M
    J Phys Chem B; 2005 Mar; 109(10):4492-6. PubMed ID: 16851523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards highly stable storage of sodium ions: a porous Na(3)V(2)(PO(4))(3)/C cathode material for sodium-ion batteries.
    Shen W; Wang C; Liu H; Yang W
    Chemistry; 2013 Oct; 19(43):14712-8. PubMed ID: 24014393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.