These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24202555)

  • 1. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
    McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA
    Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic Targeting of Mouse Vagal Afferents Using an Organ-specific, Scalable, Wireless Optoelectronic Device.
    Hong S; Kim WS; Han Y; Cherukuri R; Jung H; Campos C; Wu Q; Park SI
    Bio Protoc; 2022 Mar; 12(5):e4341. PubMed ID: 35592610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.
    Samineni VK; Yoon J; Crawford KE; Jeong YR; McKenzie KC; Shin G; Xie Z; Sundaram SS; Li Y; Yang MY; Kim J; Wu D; Xue Y; Feng X; Huang Y; Mickle AD; Banks A; Ha JS; Golden JP; Rogers JA; Gereau RW
    Pain; 2017 Nov; 158(11):2108-2116. PubMed ID: 28700536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Customizable, wireless and implantable neural probe design and fabrication via 3D printing.
    Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG
    Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.
    Zhang Y; Castro DC; Han Y; Wu Y; Guo H; Weng Z; Xue Y; Ausra J; Wang X; Li R; Wu G; Vázquez-Guardado A; Xie Y; Xie Z; Ostojich D; Peng D; Sun R; Wang B; Yu Y; Leshock JP; Qu S; Su CJ; Shen W; Hang T; Banks A; Huang Y; Radulovic J; Gutruf P; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21427-21437. PubMed ID: 31601737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.
    Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW
    Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and use of wireless reprogrammable multilateral optogenetic devices for behavioral neuroscience.
    Yang Y; Wu M; Wegener AJ; Vázquez-Guardado A; Efimov AI; Lie F; Wang T; Ma Y; Banks A; Li Z; Xie Z; Huang Y; Good CH; Kozorovitskiy Y; Rogers JA
    Nat Protoc; 2022 Apr; 17(4):1073-1096. PubMed ID: 35173306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals.
    Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics.
    Noh KN; Park SI; Qazi R; Zou Z; Mickle AD; Grajales-Reyes JG; Jang KI; Gereau RW; Xiao J; Rogers JA; Jeong JW
    Small; 2018 Jan; 14(4):. PubMed ID: 29215787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics.
    Jeong JW; McCall JG; Shin G; Zhang Y; Al-Hasani R; Kim M; Li S; Sim JY; Jang KI; Shi Y; Hong DY; Liu Y; Schmitz GP; Xia L; He Z; Gamble P; Ray WZ; Huang Y; Bruchas MR; Rogers JA
    Cell; 2015 Jul; 162(3):662-74. PubMed ID: 26189679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light.
    Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J
    Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics.
    Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW
    Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.
    Karatum O; Gwak MJ; Hyun J; Onal A; Koirala GR; Kim TI; Nizamoglu S
    Chem Soc Rev; 2023 May; 52(10):3326-3352. PubMed ID: 37018031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice.
    Grajales-Reyes JG; Copits BA; Lie F; Yu Y; Avila R; Vogt SK; Huang Y; Banks AR; Rogers JA; Gereau RW; Golden JP
    Nat Protoc; 2021 Jun; 16(6):3072-3088. PubMed ID: 34031611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations.
    Park J; Kim K; Kim Y; Kim TS; Min IS; Li B; Cho YU; Lee C; Lee JY; Gao Y; Kang K; Kim DH; Choi WJ; Shin HB; Kang HK; Song YM; Cheng H; Cho IJ; Yu KJ
    Sci Adv; 2023 Sep; 9(39):eadi8918. PubMed ID: 37756405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe.
    Li L; Lu L; Ren Y; Tang G; Zhao Y; Cai X; Shi Z; Ding H; Liu C; Cheng D; Xie Y; Wang H; Fu X; Yin L; Luo M; Sheng X
    Nat Commun; 2022 Feb; 13(1):839. PubMed ID: 35149715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.