These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24202717)

  • 1. Anaerobic microbial methylation of inorganic tin in estuarine sediment slurries.
    Gilmour CC; Tuttle JH; Means JC
    Microb Ecol; 1987 Nov; 14(3):233-42. PubMed ID: 24202717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylation of tin by estuarine microorganisms.
    Hallas LE; Means JC; Cooney JJ
    Science; 1982 Mar; 215(4539):1505-7. PubMed ID: 17788676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.
    King JK; Kostka JE; Frischer ME; Saunders FM
    Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylation and dealkykation of tin compounds by sulfate- and nitrate-reducing bacteria.
    Bridou R; Rodriguez-Gonzalez P; Stoichev T; Amouroux D; Monperrus M; Navarro P; Tessier E; Guyoneaud R
    Chemosphere; 2018 Oct; 208():871-879. PubMed ID: 30068030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen concentrations in sulfate-reducing estuarine sediments during PCE dehalogenation.
    Mazur CS; Jones WJ
    Environ Sci Technol; 2001 Dec; 35(24):4783-8. PubMed ID: 11775153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides.
    Zhang T; Kucharzyk KH; Kim B; Deshusses MA; Hsu-Kim H
    Environ Sci Technol; 2014 Aug; 48(16):9133-41. PubMed ID: 25007388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria.
    Pak KR; Bartha R
    Appl Environ Microbiol; 1998 Mar; 64(3):1013-7. PubMed ID: 16349509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of coplanar PCBs on microbial communities in anaerobic estuarine sediments.
    Ho CH; Liu SM
    J Environ Sci Health B; 2010 Jul; 45(5):437-48. PubMed ID: 20512734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment.
    Compeau GC; Bartha R
    Appl Environ Microbiol; 1985 Aug; 50(2):498-502. PubMed ID: 16346866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments.
    Compeau GC; Bartha R
    Appl Environ Microbiol; 1987 Feb; 53(2):261-5. PubMed ID: 16347274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments.
    Shih CJ; Chen YL; Wang CH; Wei ST; Lin IT; Ismail WA; Chiang YR
    Front Microbiol; 2017; 8():1520. PubMed ID: 28848528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic biodegradation of DDT residues (DDT, DDD, and DDE) in estuarine sediment.
    Huang HJ; Liu SM; Kuo CE
    J Environ Sci Health B; 2001 May; 36(3):273-88. PubMed ID: 11411851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of coal ash on methylmercury production and the methylating microbial community in anaerobic sediment slurries.
    Schwartz GE; Redfern LK; Ikuma K; Gunsch CK; Ruhl LS; Vengosh A; Hsu-Kim H
    Environ Sci Process Impacts; 2016 Nov; 18(11):1427-1439. PubMed ID: 27722355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial mercury transformation in anoxic freshwater sediments under iron-reducing and other electron-accepting conditions.
    Warner KA; Roden EE; Bonzongo JC
    Environ Sci Technol; 2003 May; 37(10):2159-65. PubMed ID: 12785521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters.
    Colin Y; Goñi-Urriza M; Gassie C; Carlier E; Monperrus M; Guyoneaud R
    Microb Ecol; 2017 Jan; 73(1):39-49. PubMed ID: 27581035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial formation of ethane in anoxic estuarine sediments.
    Oremland RS
    Appl Environ Microbiol; 1981 Jul; 42(1):122-9. PubMed ID: 16345805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury speciation in marine sediments under sulfate-limited conditions.
    Han S; Narasingarao P; Obraztsova A; Gieskes J; Hartmann AC; Tebo BM; Allen EE; Deheyn DD
    Environ Sci Technol; 2010 May; 44(10):3752-7. PubMed ID: 20429556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of coplanar polychlorinated biphenyls by anaerobic microorganisms from estuarine sediments.
    Kuo CE; Liu SM; Liu C
    Chemosphere; 1999 Oct; 39(9):1445-58. PubMed ID: 10481246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propionate Converting Anaerobic Microbial Communities Enriched from Distinct Biogeochemical Zones of Aarhus Bay, Denmark under Sulfidogenic and Methanogenic Conditions.
    Ozuolmez D; Stams AJM; Plugge CM
    Microorganisms; 2020 Mar; 8(3):. PubMed ID: 32168975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylation mechanism of tin(II) by methylcobalamin in aquatic systems.
    Chen B; Zhou Q; Liu J; Cao D; Wang T; Jiang G
    Chemosphere; 2007 Jun; 68(3):414-9. PubMed ID: 17300827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.