These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 24202720)
21. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Moussa-Ayoub TE; Abd El-Hady EA; Omran HT; El-Samahy SK; Kroh LW; Rohn S Food Res Int; 2014 Oct; 64():864-872. PubMed ID: 30011726 [TBL] [Abstract][Full Text] [Related]
22. A comparison between cactophilic yeast communities isolated from Cereus hildmannianus and Praecereus euchlorus necrotic cladodes. Camargo FP; Araujo AC; Moraes EM; Dos Santos AC Fungal Biol; 2016 Oct; 120(10):1175-83. PubMed ID: 27647235 [TBL] [Abstract][Full Text] [Related]
23. Prickly pear cactus cladodes powder of Louati I; Fersi M; Hadrich B; Ghariani B; Nasri M; Mechichi T 3 Biotech; 2018 Nov; 8(11):478. PubMed ID: 30456012 [TBL] [Abstract][Full Text] [Related]
24. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Gadanho M; Libkind D; Sampaio JP Microb Ecol; 2006 Oct; 52(3):552-63. PubMed ID: 17013554 [TBL] [Abstract][Full Text] [Related]
25. Cactus cladodes cause intestinal damage, but improve sheep performance. da Silva TGP; Batista ÂMV; Guim A; de Assis Leite Souza F; de Carvalho FFR; da Silva Júnior VA; Arandas JKG; de Barros MEG; Sousa DR; da Silva SMC Trop Anim Health Prod; 2021 Apr; 53(2):281. PubMed ID: 33890182 [TBL] [Abstract][Full Text] [Related]
26. Micromorphology of cactus-pear (Opuntia ficus-indica (L.) Mill) cladodes based on scanning microscopies. Ben Salem-Fnayou A; Zemni H; Nefzaoui A; Ghorbel A Micron; 2014 Jan; 56():68-72. PubMed ID: 24210248 [TBL] [Abstract][Full Text] [Related]
27. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community. Canto A; Herrera CM Ann Bot; 2012 Nov; 110(6):1173-83. PubMed ID: 22915578 [TBL] [Abstract][Full Text] [Related]
28. Ecological aspects of the heritability of body size in Drosophila buzzatii. Prout T; Barker JS Genetics; 1989 Dec; 123(4):803-13. PubMed ID: 2612896 [TBL] [Abstract][Full Text] [Related]
29. Partially replacing sorghum silage with cactus (Opuntia stricta) cladodes in a soybean oil-supplemented diet markedly increases trans-11 18:1, cis-9, trans-11 CLA and 18:2 n-6 contents in cow milk. Gama MAS; de Paula TA; Véras ASC; Guido SI; Borges CAV; Antoniassi R; Lopes FCF; Neves MLMW; Ferreira MA J Anim Physiol Anim Nutr (Berl); 2021 Mar; 105(2):232-246. PubMed ID: 33111420 [TBL] [Abstract][Full Text] [Related]
30. Environmental effects and the genetics of oviposition site preference for natural yeast substrates in Drosophila buzzatii. Barker JS; Starmer WT Hereditas; 1999; 130(2):145-75. PubMed ID: 10479998 [TBL] [Abstract][Full Text] [Related]
31. Sensitivity to larval density in populations of Drosophila mojavensis: Influences of host plant variation on components of fitness. Etges WJ; Heed WB Oecologia; 1987 Feb; 71(3):375-381. PubMed ID: 28312984 [TBL] [Abstract][Full Text] [Related]
32. Population differences in host plant preference and the importance of yeast and plant substrate to volatile composition. Date P; Crowley-Gall A; Diefendorf AF; Rollmann SM Ecol Evol; 2017 Jun; 7(11):3815-3825. PubMed ID: 28616178 [TBL] [Abstract][Full Text] [Related]
33. Temporal and microgeographic variation in allozyme frequencies in a natural population of Drosophila buzzatii. Barker JS; East PD; Weir BS Genetics; 1986 Mar; 112(3):577-611. PubMed ID: 3957005 [TBL] [Abstract][Full Text] [Related]
34. Relationships between necrotic cactus availability and population size in a cactophilic Drosophila (Diptera, Drosophilidae) located on a sandstone table hill in Brazil. Moraes EM; Sene FM Rev Biol Trop; 2003 Mar; 51(1):205-12. PubMed ID: 15162695 [TBL] [Abstract][Full Text] [Related]
35. The antigenotoxic activities of cactus (Opuntia ficus-indica) cladodes against the mycotoxin zearalenone in Balb/c mice: prevention of micronuclei, chromosome aberrations and DNA fragmentation. Zorgui L; Ayed-Boussema I; Ayed Y; Bacha H; Hassen W Food Chem Toxicol; 2009 Mar; 47(3):662-7. PubMed ID: 19152824 [TBL] [Abstract][Full Text] [Related]
36. Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. Carini P; Delgado-Baquerizo M; Hinckley ES; Holland-Moritz H; Brewer TE; Rue G; Vanderburgh C; McKnight D; Fierer N mBio; 2020 Jan; 11(1):. PubMed ID: 31964728 [TBL] [Abstract][Full Text] [Related]
37. Biogeographical Regionalization of Wine Yeast Communities in Greece and Environmental Drivers of Species Distribution at a Local Scale. Chalvantzi I; Banilas G; Tassou C; Nisiotou A Front Microbiol; 2021; 12():705001. PubMed ID: 34276637 [TBL] [Abstract][Full Text] [Related]
38. Cactus cladodes associated with urea and sugarcane bagasse: an alternative to conserved feed in semi-arid regions. Siqueira TDQ; Dos Santos Monnerat JPI; Chagas JCC; da Conceição MG; de Siqueira MCB; Viana TBL; de Andrade Ferreira M Trop Anim Health Prod; 2019 Sep; 51(7):1975-1980. PubMed ID: 31025303 [TBL] [Abstract][Full Text] [Related]
39. Yeast communities of the cactus Pilosocereus arrabidae as resources for larval and adult stages of Drosophila serido. Morais PB; Rosa CA; Hagler AN; Mendonca-Hagler LC Antonie Van Leeuwenhoek; 1994; 66(4):313-7. PubMed ID: 7710278 [TBL] [Abstract][Full Text] [Related]
40. Yeast in plant phytotelmata: Is there a "core" community in different localities of rupestrian savannas of Brazil? Morais PB; de Sousa FMP; Rosa CA Braz J Microbiol; 2020 Sep; 51(3):1209-1218. PubMed ID: 32385836 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]