These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24203207)

  • 1. Prediction of additive and dominance effects in selected or unselected populations with inbreeding.
    de Boer IJ; van Arendonk JA
    Theor Appl Genet; 1992 Jul; 84(3-4):451-9. PubMed ID: 24203207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic evaluation methods for populations with dominance and inbreeding.
    de Boer IJ; Hoeschele I
    Theor Appl Genet; 1993 Apr; 86(2-3):245-58. PubMed ID: 24193467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.
    Fernández EN; Legarra A; Martínez R; Sánchez JP; Baselga M
    J Anim Breed Genet; 2017 Jun; 134(3):184-195. PubMed ID: 28508486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of additive genetic variance when base populations are selected.
    van der Werf JH; de Boer IJ
    J Anim Sci; 1990 Oct; 68(10):3124-32. PubMed ID: 2254191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using inbreeding to test the contribution of non-additive genetic effects to additive genetic variance: a case study in
    Dugand RJ; Blows MW; McGuigan K
    Proc Biol Sci; 2023 Mar; 290(1995):20222111. PubMed ID: 36919433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential bias in inbreeding depression estimates when using pedigree relationships to assess the degree of homozygosity for loci under selection.
    Groen AF; Kennedy BW; Eissen JJ
    Theor Appl Genet; 1995 Sep; 91(4):665-71. PubMed ID: 24169896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of dominance and epistasis on the genetic make-up of simulated populations under selection: a model development.
    Fuerst C; James JW; Sölkner J; Essl A
    J Anim Breed Genet; 1997 Jan; 114(1-6):163-75. PubMed ID: 21395812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The consequences of including non-additive effects on the genetic evaluation of harvest body weight in Coho salmon (Oncorhynchus kisutch).
    Gallardo JA; Lhorente JP; Neira R
    Genet Sel Evol; 2010 Jun; 42(1):19. PubMed ID: 20540752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint effect of selection, linkage and partial inbreeding on additive genetic variance in an infinite population.
    Nomura T
    Biom J; 2005 Aug; 47(4):527-40. PubMed ID: 16161809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of dominance to the understanding of quantitative genetic variation.
    Wellmann R; Bennewitz J
    Genet Res (Camb); 2011 Apr; 93(2):139-54. PubMed ID: 21481291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative genetics model as the unifying model for defining genomic relationship and inbreeding coefficient.
    Wang C; Da Y
    PLoS One; 2014; 9(12):e114484. PubMed ID: 25517971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epistasis and the temporal change in the additive variance-covariance matrix induced by drift.
    López-Fanjul C; Fernández A; Toro MA
    Evolution; 2004 Aug; 58(8):1655-63. PubMed ID: 15446420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of genetic drift on variance components under a general model of epistasis.
    Barton NH; Turelli M
    Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inbreeding depression across the genome of Dutch Holstein Friesian dairy cattle.
    Doekes HP; Bijma P; Veerkamp RF; de Jong G; Wientjes YCJ; Windig JJ
    Genet Sel Evol; 2020 Oct; 52(1):64. PubMed ID: 33115403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional considerations to the use of single-step genomic predictions in a dominance setting.
    Mota RR; Vanderick S; Colinet FG; Hammami H; Wiggans GR; Gengler N
    J Anim Breed Genet; 2019 Nov; 136(6):430-440. PubMed ID: 31161675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of full sibs on additive breeding values under the dominance model for stature in United States Holsteins.
    Varona L; Misztal I; Bertrand JK; Lawlor TJ
    J Dairy Sci; 1998 Apr; 81(4):1126-35. PubMed ID: 9594402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species.
    Fernández J; Villanueva B; Toro MA
    Genet Sel Evol; 2021 Feb; 53(1):14. PubMed ID: 33568069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Additive and nonadditive genetic variance in female fertility of Holsteins.
    Hoeschele I
    J Dairy Sci; 1991 May; 74(5):1743-52. PubMed ID: 1880275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.