BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24203336)

  • 1. Applications of NMR-based PRE and EPR-based DEER spectroscopy to homodimer chain exchange characterization and structure determination.
    Yang Y; Ramelot TA; Ni S; McCarrick RM; Kennedy MA
    Methods Mol Biol; 2014; 1091():215-27. PubMed ID: 24203336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining NMR and EPR methods for homodimer protein structure determination.
    Yang Y; Ramelot TA; McCarrick RM; Ni S; Feldmann EA; Cort JR; Wang H; Ciccosanti C; Jiang M; Janjua H; Acton TB; Xiao R; Everett JK; Montelione GT; Kennedy MA
    J Am Chem Soc; 2010 Sep; 132(34):11910-3. PubMed ID: 20698532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of rate constants for homodimer subunit exchange using double electron-electron resonance and paramagnetic relaxation enhancements.
    Yang Y; Ramelot TA; Ni S; McCarrick RM; Kennedy MA
    J Biomol NMR; 2013 Jan; 55(1):47-58. PubMed ID: 23180051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial domain organization in the HIV-1 reverse transcriptase p66 homodimer precursor probed by double electron-electron resonance EPR.
    Schmidt T; Schwieters CD; Clore GM
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):17809-17816. PubMed ID: 31383767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment.
    Rumpel S; Becker S; Zweckstetter M
    J Biomol NMR; 2008 Jan; 40(1):1-13. PubMed ID: 18026911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.
    Duss O; Yulikov M; Allain FHT; Jeschke G
    Methods Enzymol; 2015; 558():279-331. PubMed ID: 26068745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paramagnetic-iterative relaxation matrix approach: extracting PRE-restraints from NOESY spectra for 3D structure elucidation of biomolecules.
    Cetiner EC; Jonker HRA; Helmling C; Gophane DB; Grünewald C; Sigurdsson ST; Schwalbe H
    J Biomol NMR; 2019 Dec; 73(12):699-712. PubMed ID: 31606877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR approaches for structural analysis of multidomain proteins and complexes in solution.
    Göbl C; Madl T; Simon B; Sattler M
    Prog Nucl Magn Reson Spectrosc; 2014 Jul; 80():26-63. PubMed ID: 24924266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking protein domain movements by EPR distance determination and multilateration.
    Stehle J; Drescher M
    Methods Enzymol; 2022; 666():121-144. PubMed ID: 35465918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of intermolecular NOE interactions in large protein complexes.
    Anglister J; Srivastava G; Naider F
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():40-56. PubMed ID: 27888839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy.
    Barthelmes D; Gränz M; Barthelmes K; Allen KN; Imperiali B; Prisner T; Schwalbe H
    J Biomol NMR; 2015 Nov; 63(3):275-82. PubMed ID: 26341230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paramagnetic labelling of proteins and oligonucleotides for NMR.
    Su XC; Otting G
    J Biomol NMR; 2010 Jan; 46(1):101-12. PubMed ID: 19529883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating structural life science by paramagnetic lanthanide probe methods.
    Saio T; Ishimori K
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129332. PubMed ID: 30928492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the utility of NMR restraints with paramagnetic compounds: background and practical aspects.
    Koehler J; Meiler J
    Prog Nucl Magn Reson Spectrosc; 2011 Nov; 59(4):360-89. PubMed ID: 22027343
    [No Abstract]   [Full Text] [Related]  

  • 16. A novel strategy for NMR resonance assignment and protein structure determination.
    Lemak A; Gutmanas A; Chitayat S; Karra M; Farès C; Sunnerhagen M; Arrowsmith CH
    J Biomol NMR; 2011 Jan; 49(1):27-38. PubMed ID: 21161328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Pressure EPR and Site-Directed Spin Labeling for Mapping Molecular Flexibility in Proteins.
    Lerch MT; Yang Z; Altenbach C; Hubbell WL
    Methods Enzymol; 2015; 564():29-57. PubMed ID: 26477247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paramagnetic spin labeling of a bacterial DnaB helicase for solid-state NMR.
    Zehnder J; Cadalbert R; Yulikov M; Künze G; Wiegand T
    J Magn Reson; 2021 Nov; 332():107075. PubMed ID: 34597956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
    Wu K; Shi C; Li J; Wang H; Shi P; Chen L; Wu F; Xiong Y; Tian C
    Protein Cell; 2013 Dec; 4(12):893-6. PubMed ID: 24282082
    [No Abstract]   [Full Text] [Related]  

  • 20. NMR solution structure determination of large RNA-protein complexes.
    Yadav DK; Lukavsky PJ
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():57-81. PubMed ID: 27888840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.