BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24203493)

  • 1. Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel.
    Nayak A; Das DB; Vladisavljević GT
    Pharm Res; 2014 May; 31(5):1170-84. PubMed ID: 24203493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lidocaine permeation from a lidocaine NaCMC/gel microgel formulation in microneedle-pierced skin: vertical (depth averaged) and horizontal permeation profiles.
    Nayak A; Short L; Das DB
    Drug Deliv Transl Res; 2015 Aug; 5(4):372-86. PubMed ID: 25895729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound.
    Nayak A; Babla H; Han T; Das DB
    Drug Deliv; 2016; 23(2):658-69. PubMed ID: 25034877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topical permeation characteristics of diclofenac sodium from NaCMC gels in comparison with conventional gel formulations.
    Mohammed FA
    Drug Dev Ind Pharm; 2001 Nov; 27(10):1083-97. PubMed ID: 11794811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transdermal Delivery of Lidocaine-Loaded Elastic Nano-Liposomes with Microneedle Array Pretreatment.
    Liu Y; Cheng M; Zhao J; Zhang X; Huang Z; Zang Y; Ding Y; Zhang J; Ding Z
    Biomedicines; 2021 May; 9(6):. PubMed ID: 34071133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose hydrogels using a controlled stress rheometer: part II.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):63-73. PubMed ID: 15725554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Novel Self-Dissolving Microneedle-Assisted Percutaneous Delivery System of Diacerein through Solid Dispersion Gel: Solubility Enhancement, Proof of Anti-inflammatory Activity and Safety.
    Shabbir M; Barkat K; Ashraf MU; Nagra U
    Curr Drug Deliv; 2023; 20(9):1351-1367. PubMed ID: 35770410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of buffers on the properties of microbicidal hydrogels containing monoglyceride as the active ingredient.
    Kristmundsdóttir T; Sigurdsson P; Thormar H
    Drug Dev Ind Pharm; 2003 Feb; 29(2):121-9. PubMed ID: 12648008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation.
    Khan S; Anwar N
    Carbohydr Polym; 2021 Apr; 257():117617. PubMed ID: 33541645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose.
    Salleh KM; Zakaria S; Sajab MS; Gan S; Kaco H
    Int J Biol Macromol; 2019 Jun; 131():50-59. PubMed ID: 30844455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiolated carboxymethylcellulose: in vitro evaluation of its permeation enhancing effect on peptide drugs.
    Clausen AE; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2001 Jan; 51(1):25-32. PubMed ID: 11154900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan⁻Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation.
    Roy JC; Ferri A; Giraud S; Jinping G; Salaün F
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application.
    Banerjee S; Siddiqui L; Bhattacharya SS; Kaity S; Ghosh A; Chattopadhyay P; Pandey A; Singh L
    Int J Biol Macromol; 2012 Jan; 50(1):198-206. PubMed ID: 22062120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intradermal Delivery of an Immunomodulator for Basal Cell Carcinoma; Expanding the Mechanistic Insight into Solid Microneedle-Enhanced Delivery of Hydrophobic Molecules.
    Sabri A; Ogilvie J; McKenna J; Segal J; Scurr D; Marlow M
    Mol Pharm; 2020 Aug; 17(8):2925-2937. PubMed ID: 32510228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of propranolol hydrochloride from matrix tablets containing sodium carboxymethylcellulose and hydroxypropylmethylcellulose.
    Dabbagh MA; Ford JL; Rubinstein MH; Hogan JE; Rajabi-Siahboomi AR
    Pharm Dev Technol; 1999 Aug; 4(3):313-24. PubMed ID: 10434277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis.
    da Silva JB; Cook MT; Bruschi ML
    Carbohydr Polym; 2020 Jul; 240():116268. PubMed ID: 32475558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large Size Microneedle Patch to Deliver Lidocaine through Skin.
    Kathuria H; Li H; Pan J; Lim SH; Kochhar JS; Wu C; Kang L
    Pharm Res; 2016 Nov; 33(11):2653-67. PubMed ID: 27401408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water uptake and relaxation processes in mixed unlimited swelling hydrogels.
    Michailova V; Titeva S; Kotsilkova R; Krusteva E; Minkov E
    Int J Pharm; 2000 Nov; 209(1-2):45-56. PubMed ID: 11084245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):53-61. PubMed ID: 15725553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From formulation of acrylamide-based hydrogels to their optimization for drug release using response surface methodology.
    Sabbagh F; Muhamad II; Nazari Z; Mobini P; Taraghdari SB
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():20-25. PubMed ID: 30184743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.