These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 24203551)

  • 1. Neural organization of the defensive behavior system responsible for fear.
    Fanselow MS
    Psychon Bull Rev; 1994 Dec; 1(4):429-38. PubMed ID: 24203551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.
    Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML
    Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From threat to fear: the neural organization of defensive fear systems in humans.
    Mobbs D; Marchant JL; Hassabis D; Seymour B; Tan G; Gray M; Petrovic P; Dolan RJ; Frith CD
    J Neurosci; 2009 Sep; 29(39):12236-43. PubMed ID: 19793982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anxiety, fear, panic: An approach to assessing the defensive behavior system across the predatory imminence continuum.
    Hoffman AN; Trott JM; Makridis A; Fanselow MS
    Learn Behav; 2022 Sep; 50(3):339-348. PubMed ID: 35112315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organization of defensive behavior elicited by optogenetic excitation of rat lateral or ventrolateral periaqueductal gray.
    Assareh N; Sarrami M; Carrive P; McNally GP
    Behav Neurosci; 2016 Aug; 130(4):406-14. PubMed ID: 27243807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing and the transition between modes in the defensive behavior system.
    Fanselow MS; Hoffman AN; Zhuravka I
    Behav Processes; 2019 Sep; 166():103890. PubMed ID: 31254627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.
    Osaki MY; Castellan-Baldan L; Calvo F; Carvalho AD; Felippotti TT; de Oliveira R; Ubiali WA; Paschoalin-Maurin T; Elias-Filho DH; Motta V; da Silva LA; Coimbra NC
    Brain Res; 2003 Dec; 992(2):179-92. PubMed ID: 14625057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors.
    Deng H; Xiao X; Wang Z
    J Neurosci; 2016 Jul; 36(29):7580-8. PubMed ID: 27445137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses.
    De Oca BM; DeCola JP; Maren S; Fanselow MS
    J Neurosci; 1998 May; 18(9):3426-32. PubMed ID: 9547249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 5-HT2 receptors blockade on fear-induced analgesia elicited by electrical stimulation of the deep layers of the superior colliculus and dorsal periaqueductal gray.
    Coimbra NC; Brandão ML
    Behav Brain Res; 1997 Aug; 87(1):97-103. PubMed ID: 9331477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety.
    Brenes JC; Broiz AC; Bassi GS; Schwarting RK; Brandão ML
    Braz J Med Biol Res; 2012 Apr; 45(4):349-56. PubMed ID: 22392188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The defense system of fear: behavior and neurocircuitry.
    Misslin R
    Neurophysiol Clin; 2003 Apr; 33(2):55-66. PubMed ID: 12837573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of amygdala in conditioned and unconditioned fear generated in the periaqueductal gray.
    Oliveira LC; Nobre MJ; Brandão ML; Landeira-Fernandez J
    Neuroreport; 2004 Oct; 15(14):2281-5. PubMed ID: 15371750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Encoding of Predator Fear in the Ventromedial Hypothalamus and Periaqueductal Grey.
    Esteban Masferrer M; Silva BA; Nomoto K; Lima SQ; Gross CT
    J Neurosci; 2020 Nov; 40(48):9283-9292. PubMed ID: 33115925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of lesions of amygdaloid nuclei and substantia nigra on aversive responses induced by electrical stimulation of the inferior colliculus.
    Maisonnette SS; Kawasaki MC; Coimbra NC; Brandão ML
    Brain Res Bull; 1996; 40(2):93-8. PubMed ID: 8724425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal periaqueductal gray post-stimulation freezing is counteracted by neurokinin-1 receptor antagonism in the central nucleus of the amygdala in rats.
    Carvalho MC; Santos JM; Brandão ML
    Neurobiol Learn Mem; 2015 May; 121():52-8. PubMed ID: 25883049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Participation of NK1 receptors of the amygdala on the processing of different types of fear.
    Carvalho MC; Santos JM; Bassi GS; Brandão ML
    Neurobiol Learn Mem; 2013 May; 102():20-7. PubMed ID: 23567110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditioned turning behavior: a Pavlovian fear response expressed during the post-encounter period following aversive stimulation.
    Tarpley JW; Shlifer IG; Halladay LR; Blair HT
    Neuroscience; 2010 Sep; 169(4):1689-704. PubMed ID: 20600645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking.
    Motta SC; Carobrez AP; Canteras NS
    Neurosci Biobehav Rev; 2017 May; 76(Pt A):39-47. PubMed ID: 28434586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.