These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 24204084)
21. Joint scale-change models for recurrent events and failure time. Xu G; Chiou SH; Huang CY; Wang MC; Yan J J Am Stat Assoc; 2017; 112(518):794-805. PubMed ID: 28943684 [TBL] [Abstract][Full Text] [Related]
22. A joint modeling approach for analyzing marker data in the presence of a terminal event. Zhou J; Chen X; Song X; Sun L Biometrics; 2021 Mar; 77(1):150-161. PubMed ID: 32150277 [TBL] [Abstract][Full Text] [Related]
23. Random weighted bootstrap method for recurrent events with informative censoring. Chiang CT; James LF; Wang MC Lifetime Data Anal; 2005 Dec; 11(4):489-509. PubMed ID: 16328573 [TBL] [Abstract][Full Text] [Related]
24. Kernel Estimation of Rate Function for Recurrent Event Data. Chiang CT; Wang MC; Huang CY Scand Stat Theory Appl; 2005 Mar; 32(1):77-91. PubMed ID: 24062598 [TBL] [Abstract][Full Text] [Related]
25. Semiparametric regression for the weighted composite endpoint of recurrent and terminal events. Mao L; Lin DY Biostatistics; 2016 Apr; 17(2):390-403. PubMed ID: 26668069 [TBL] [Abstract][Full Text] [Related]
26. Regression analysis of failure time data with informative interval censoring. Zhang Z; Sun L; Sun J; Finkelstein DM Stat Med; 2007 May; 26(12):2533-46. PubMed ID: 17072823 [TBL] [Abstract][Full Text] [Related]
27. Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events. Rondeau V; Mathoulin-Pelissier S; Jacqmin-Gadda H; Brouste V; Soubeyran P Biostatistics; 2007 Oct; 8(4):708-21. PubMed ID: 17267392 [TBL] [Abstract][Full Text] [Related]
28. Efficient Multiple Imputation for Sensitivity Analysis of Recurrent Events Data with Informative Censoring. Diao G; Liu GF; Zeng D; Zhang Y; Golm G; Heyse JF; Ibrahim JG Stat Biopharm Res; 2022; 14(2):153-161. PubMed ID: 35601027 [TBL] [Abstract][Full Text] [Related]
29. Semiparametric analysis of zero-inflated recurrent events with a terminal event. Ma C; Hu T; Lin Z Stat Med; 2021 Aug; 40(18):4053-4067. PubMed ID: 33963791 [TBL] [Abstract][Full Text] [Related]
30. The partly Aalen's model for recurrent event data with a dependent terminal event. Chen CM; Shen PS; Chuang YW Stat Med; 2016 Jan; 35(2):268-81. PubMed ID: 26265213 [TBL] [Abstract][Full Text] [Related]
31. Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas. Barthel N; Geerdens C; Czado C; Janssen P Biometrics; 2019 Jun; 75(2):439-451. PubMed ID: 30549012 [TBL] [Abstract][Full Text] [Related]
32. Regression analysis for recurrent events data under dependent censoring. Hsieh JJ; Ding AA; Wang W Biometrics; 2011 Sep; 67(3):719-29. PubMed ID: 21039394 [TBL] [Abstract][Full Text] [Related]
33. Two-stage estimation for multivariate recurrent event data with a dependent terminal event. Chen CM; Chuang YW; Shen PS Biom J; 2015 Mar; 57(2):215-33. PubMed ID: 25524756 [TBL] [Abstract][Full Text] [Related]
34. An estimating function approach to the analysis of recurrent and terminal events. Kalbfleisch JD; Schaubel DE; Ye Y; Gong Q Biometrics; 2013 Jun; 69(2):366-74. PubMed ID: 23651362 [TBL] [Abstract][Full Text] [Related]
35. Factor analytic models of clustered multivariate data with informative censoring. Dunson DB; Perreault SD Biometrics; 2001 Mar; 57(1):302-8. PubMed ID: 11252614 [TBL] [Abstract][Full Text] [Related]
36. Bayesian models for multivariate current status data with informative censoring. Dunson DB; Dinse GE Biometrics; 2002 Mar; 58(1):79-88. PubMed ID: 11890330 [TBL] [Abstract][Full Text] [Related]
37. Evaluating Utility Measurement from Recurrent Marker Processes in the Presence of Competing Terminal Events. Sun Y; Wang MC J Am Stat Assoc; 2017; 112(518):745-756. PubMed ID: 28966418 [TBL] [Abstract][Full Text] [Related]
38. Comparison of nonparametric estimators of the expected number of recurrent events. Erdmann A; Beyersmann J; Bluhmki E Pharm Stat; 2024; 23(3):339-369. PubMed ID: 38153191 [TBL] [Abstract][Full Text] [Related]
39. A note on competing risks in survival data analysis. Satagopan JM; Ben-Porat L; Berwick M; Robson M; Kutler D; Auerbach AD Br J Cancer; 2004 Oct; 91(7):1229-35. PubMed ID: 15305188 [TBL] [Abstract][Full Text] [Related]
40. A pairwise pseudo-likelihood approach for regression analysis of left-truncated failure time data with various types of censoring. Shao L; Li H; Li S; Sun J BMC Med Res Methodol; 2023 Apr; 23(1):82. PubMed ID: 37016341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]