BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24204229)

  • 1. Comprehensive repertoire of foldable regions within whole genomes.
    Faure G; Callebaut I
    PLoS Comput Biol; 2013 Oct; 9(10):e1003280. PubMed ID: 24204229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Order in Disorder as Observed by the "Hydrophobic Cluster Analysis" of Protein Sequences.
    Bitard-Feildel T; Lamiable A; Mornon JP; Callebaut I
    Proteomics; 2018 Nov; 18(21-22):e1800054. PubMed ID: 30299594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of orphan domains in Drosophila using "hydrophobic cluster analysis".
    Bitard-Feildel T; Heberlein M; Bornberg-Bauer E; Callebaut I
    Biochimie; 2015 Dec; 119():244-53. PubMed ID: 25736992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized analysis of hydrophobic and loop clusters within globular protein sequences.
    Eudes R; Le Tuan K; Delettré J; Mornon JP; Callebaut I
    BMC Struct Biol; 2007 Jan; 7():2. PubMed ID: 17210072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A topology-based investigation of protein interaction sites using Hydrophobic Cluster Analysis.
    Lamiable A; Bitard-Feildel T; Rebehmed J; Quintus F; Schoentgen F; Mornon JP; Callebaut I
    Biochimie; 2019 Dec; 167():68-80. PubMed ID: 31525399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of hidden relationships from the coupling of hydrophobic cluster analysis and domain architecture information.
    Faure G; Callebaut I
    Bioinformatics; 2013 Jul; 29(14):1726-33. PubMed ID: 23677940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sequence-based foldability score combined with AlphaFold2 predictions to disentangle the protein order/disorder continuum.
    Bruley A; Bitard-Feildel T; Callebaut I; Duprat E
    Proteins; 2023 Apr; 91(4):466-484. PubMed ID: 36306150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying foldable regions in protein sequence from the hydrophobic signal.
    Pang CN; Lin K; Wouters MA; Heringa J; George RA
    Nucleic Acids Res; 2008 Feb; 36(2):578-88. PubMed ID: 18056079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.
    Bradshaw CR; Surendranath V; Henschel R; Mueller MS; Habermann BH
    PLoS One; 2011 Mar; 6(3):e17568. PubMed ID: 21423752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the dark foldable proteome by considering hydrophobic amino acids topology.
    Bitard-Feildel T; Callebaut I
    Sci Rep; 2017 Jan; 7():41425. PubMed ID: 28134276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences.
    Lemesle-Varloot L; Henrissat B; Gaboriaud C; Bissery V; Morgat A; Mornon JP
    Biochimie; 1990 Aug; 72(8):555-74. PubMed ID: 2126461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coverage of whole proteome by structural genomics observed through protein homology modeling database.
    Yura K; Yamaguchi A; Go M
    J Struct Funct Genomics; 2006 Jun; 7(2):65-76. PubMed ID: 17146617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic cluster analysis of G protein-coupled receptors: a powerful tool to derive structural and functional information from 2D-representation of protein sequences.
    Lentes KU; Mathieu E; Bischoff R; Rasmussen UB; Pavirani A
    J Recept Res; 1993; 13(1-4):179-94. PubMed ID: 8383751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bringing order to protein disorder through comparative genomics and genetic interactions.
    Bellay J; Han S; Michaut M; Kim T; Costanzo M; Andrews BJ; Boone C; Bader GD; Myers CL; Kim PM
    Genome Biol; 2011; 12(2):R14. PubMed ID: 21324131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein families and their evolution-a structural perspective.
    Orengo CA; Thornton JM
    Annu Rev Biochem; 2005; 74():867-900. PubMed ID: 15954844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins and structural properties of novel and de novo protein domains during insect evolution.
    Klasberg S; Bitard-Feildel T; Callebaut I; Bornberg-Bauer E
    FEBS J; 2018 Jul; 285(14):2605-2625. PubMed ID: 29802682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and distribution of protein families in 120 completed genomes using Gene3D.
    Lee D; Grant A; Marsden RL; Orengo C
    Proteins; 2005 May; 59(3):603-15. PubMed ID: 15768405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of unfolded segments in a protein sequence based on amino acid composition.
    Coeytaux K; Poupon A
    Bioinformatics; 2005 May; 21(9):1891-900. PubMed ID: 15657106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control.
    Rose A; Schraegle SJ; Stahlberg EA; Meier I
    BMC Evol Biol; 2005 Nov; 5():66. PubMed ID: 16288662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer.
    Rask TS; Hansen DA; Theander TG; Gorm Pedersen A; Lavstsen T
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20862303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.